.

偶偶核转动三带的交叉混杂

顾金南 王正大

(中国科学院近代物理研究所)

摘 要

本文探讨了希土区偶偶核的超带与基态带、β带或γ带的交叉混杂。

我们用"定本征值问题中待定参数"的方法定出参数后使哈密顿矩阵对角 化,计算了十多个核的转动三带能谱,与现有实验值符合较好,给出了超带等三 个转动带交叉混杂的一些信息.

一、引言

通常人们认为⁽¹⁻⁵⁾,原子核转晕态的 $\mathscr{I} \sim \omega^2$ 图上的回弯是由转动惯量 \mathscr{I} 大的超带 (\mathscr{I}_s 接近刚体的 \mathscr{I}_r 值)与基态带 $\left(\mathscr{I}_s \approx \frac{1}{2} \mathscr{I}_r, \underbrace{\Im}_{3} \mathscr{I}_r\right)$ 交叉混杂产生的.

产生超带的机制可能有三种: 对崩溃^[5] (CAP 效应)、转动排列效应^[4]和形状相变.

由于β或γ振动带的转动惯量(𝒴, 或 𝒴,) 与𝒴, 相近, 只要这种单声子振动带的 带头能量 𝒴, 或 𝒴, 低于超带的带头能量,超带就还可以先与β带(或γ带)发生交叉,当 其混杂较小时,同样产生回弯.

实验上,转晕带和其它边带的数据日益丰富. 支持这种多带交叉混杂的图象的有¹³⁴Gd,¹⁵⁵Dy,¹⁵⁴Dy,¹⁶⁴Er 等核^[6-8].

对于稀土区偶偶核,在中子数 N = 90-100 附近,实验表明,一些核的超带先与 β 带(或 γ 带)交叉,交叉点 $l \approx 12\hbar$;后与基态带交叉,交叉点 $l \approx 14-18\hbar$.

理论上,一些作者^[1-3]开始了多带交叉混杂的计算和分析,但主要只限于对个别核的 讨论.

本文试图从略为不同的角度,来讨论多带(主要是三带)交叉混杂问题. 并将这种多 带交叉混杂图象用到大变形核 Hf, Os 等上去.

我们先对三带交叉混杂简单叙述,再根据这种图象,分析实验数据,即可能得到混杂 大小、超带与β带交叉点和超带的K(核总角动量I在对称轴上的投影值)等的信息.

我们对一些核的三带交叉混杂作了理论计算. 首先,在所选择的空间中产生哈密顿 矩阵表示. 每个矩阵元中所含的待定参数,用与常用的最小二乘法不同的方法定出¹⁹¹,再 使哈密顿矩阵对角化. 计算了十多个希土区偶偶核的转动三带能谱,给出了超带的 *E*_s,

本文 1979 年 7 月 24 日收到。

J.及其与β带、基态带混杂大小的信息,与实验值符合较好.最后,对计算结果作了分 析讨论.

二、带交叉混杂图象

三带交叉混杂的图象^[10]见图 1. 超带首先与 β 带(或 γ 带),然后与基态带交叉.如带间没有混杂,即是图中实线所示. 在交叉点处转晕带的 \mathscr{G} 突变, $\mathscr{G} \sim \omega^2$ ($\Diamond \hbar = 1$)图 2 上就出现急剧回弯. 如带间有混杂,即是图中虚线所示,当混杂小时, $\mathscr{G} \sim \omega^2$ 图上

图 2 示意图

的曲线也出现回弯;当混杂大时,则 $\mathscr{I} \sim \omega^2$ 曲线平缓,无回弯. 但 E(I) 的二级差分 $\Delta^2 E(I) \sim I$ 的曲线仍有极小(参看 Dy¹⁸ 图). 在转晕带中,交叉点以下的主要是基态带 的成分,交叉点以上的主要是超带的成分. 次转晕带 $E_2(I)$ 中,低 I 处(超带与 β 带的交 叉点以下)主要是 β 带成分,中间区域主要是超带成分,高 I 处(超带与基态带交叉点以 上)主要是基态带成分. 现有的实验能谱数据说明了这点.

约化 E2 跃迁几率之比^{IIII}也说明了这一点,¹⁵⁴Gd 核的 $B(E2, I' \rightarrow I-2)/B(E2 I' \rightarrow (I-2)')$ 值从 10⁻³ (在 I' = 12' 处) 到 1.4 (I' = 18' 处),表明次转晕带 E2(I') 中主要是 带内 ($I' \rightarrow (I-2)'$) 跃迁,而不是带间 ($I' \rightarrow I-2$) 跃迁,只是在交叉点 18' 附近例外,说明 18' 已经主要是基态带的成分.所以是转晕带(而不是基带)发生回弯现象.

基态带、 β 带、超带的能谱大致可以用 $f^2(f^2 = I(I + 1))$ 描述,特别是对大变形区, 对转变核 (N = 88 附近),偏离较大些,但是 $E_1(I)$, $E_2(I)$, $E_3(I)$ 都不遵循 f^2 规则.

依据这种带交叉图象,如果不考虑其它带的影响,则可以与模型无关地求出带间混杂 在交叉点 *I*,处的大小(参看(14)式)

$$K_{12}(I_c) = \frac{1}{2} (E_2(I_c) - E_1(I_c)).$$

显然,这是很有用的,它可以检查理论结果. 特别是¹⁵⁶Dy 核,其 K₁₂(*I*_c)很小,只有 12 KeV.,值得探讨.

由 $K_{12}(l_c)$ 的大小可以知道 $\mathscr{I} \sim \omega^2$ 图 2 上的曲线是否发生回弯,图 2 所示的四种

et

情况, K = 0 = K很大是两种极端情况.对 K 大的情况, 我们根据 $\mathscr{I} \sim \omega^2$ 图无法判别是 否发生了带交叉, 这时可以由转晕带的二级差分 $\Delta^2 E_1(1)$ 的极小值点判明^[13].

	4+	6+	8+	10+	12+	14+	16+	18+
$\mathbf{\Delta}^{2}E_{1}(I)$	124.9	98.7	80.1	66.2	54.8	45.2	34.2	-16.5
$-\Delta^{3}E_{1}(I)$	26.2	18.6	13.9	11.4	9.6	11.0	50.7	
$\Delta^2 E_2(I)$	97.3	86.2	72.4	47.0	-9.7	-22.4	48.4	

表 1 ¹³⁴Gd 的 $\Delta^3 E_1(I)$ 和 $\Delta^2 E_2(I)$ 值

对转晕带的三级差分 $\Delta^3 E_1(I)$, 在低 I 处, 我们发现有个次极大, 差不多对应于次转 晕带 $E_2(I)$ 的二级差分 $\Delta^2 E_2(I)$ 的极小值.

¹⁸Dy 的数据也与之类似. 当然,这里还有 γ 带的影响,因为这两个核的 β 带和 γ 带 靠得很近.

已经确知, $\Delta^2 E_1(I)$ 在 I_{c_1} 处有极小值是由于在这里发生了 \mathscr{I} 的突变. 同样,超带与 β 带交叉处 I_{c_2} 也发生 \mathscr{I} 的突变,所以 $\Delta^2 E_2(I)$ 在 I_{c_2} 处有极小值,这种突变可能会反映 到转晕带的三级差分中来,有待于进一步探索.

由于 r 带具有奇偶自旋,我们从对它的分析中可以获得更多的信息,其中之一就是可 以判别超带的 K 值.¹⁶⁴Er 的数据^[7,8](可能有五带交叉)表明,超带只与 r 带的偶自旋部分 发生交叉 ($I_c \approx 10$) 混杂,所以超带显然不是 K = 1 或奇值的带.而 r 带与另一K 为奇 值的带交叉 ($I_c \approx 13$, 12) 在较高 I 处,参看图 3.

但是,要在多带混杂的计算中来得到超带的K值,象对^{1%}Dy所作的计算那样,可能会得到不同的结果^[2,3].

超带K值的确定有助于判明超带是那种机制产生的^[3].

图 3 基态带和 r 带的 ダ~ω² 图

三、三带混杂和参数的确定

设原子核转动的薛定谔方程为

$$H\Psi = E^{T}\Psi.$$
 (1)

 $H, E^{T}(I)$ 和 Ψ 为原子核转动系统的哈密顿量、本征值和相应于确定本征值 E^{T} 时的本征 态.设 $H = H_{0} + H', H'$ 为微扰哈密顿量; φ 为 H_{0} 的本征态, Ψ 即可展开

$$\Psi = \sum_{n} C_{n} \varphi_{n}, \qquad (2)$$

代入(1)式,考虑三带交叉混杂,截断后得到

$$\begin{pmatrix} h_{11} & K_{12} & K_{13} \\ K_{21} & h_{22} & K_{23} \\ K_{31} & K_{32} & h_{33} \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ C_3 \end{pmatrix} = E^T \begin{pmatrix} C_1 \\ C_2 \\ C_3 \end{pmatrix},$$
(3)

或写为 $\mathcal{U}^{(3)}C = E^T C$. \mathcal{U} 是实对称矩阵,如令 $K_{13} = K_{31} = 0$,它也可以用 Lanczos 代 数产生^[13].

矩阵元 $h_{11} = \langle \varphi_l | H | \varphi_l \rangle$, 非对角矩阵元 $K_{1m} = \langle \varphi_l | H | \varphi_m \rangle l \neq m$; h_{11} 是基态带, h_{33} 是 β 带, h_{22} 是超带. K_{1m} 是带间相互作用,即带间混杂.

设

$$h_{11} = a_1 \hat{l}^2 - a_6 \hat{l}^4, \quad h_{22} = a_3 \hat{l}^2 + a_4, \quad h_{33} = a_\beta \hat{l}^2 + E_\beta,$$
 (4)

$$K_{12} = a_2; a_2 \hat{l}; a_2 \hat{l}^2, \quad K_{23} = a_5; a_5 \hat{l}; a_5 \hat{l}^2, \quad K_{13} = 0,$$
 (5)

这里 a₁, a₂, ···, a₆ 为待定参数, 以 a_i 记之. K_{lm} 有三种形式. 这种矩阵元的假设相当于 图 1 所示实线, 虚线为经过带间混杂 K_{lm} 后所成的转晕带等三个带.

(3) 式有非零解的充要条件是特征多项式(或特征行列式)值为零

$$\det \left| \mathscr{H}^{(3)} - E^T \mathbf{1} \right| = 0, \tag{6}$$

1 是单位矩阵, det 表示特征行列式.对任意的 a_i , 由式(6)可解出 $E^T = E_j^T(I, a_i)$, 这里 T代表计算值, i = 1, 2, 3, 即对于一个确定的 I 值有 3 个 E^T 值: E_1^T, E_2^T, E_3^T . 如对 任意的 a_i , 要 $E_j^T(I, a_i)$ 同实验值 $E_j^r(I)$ 比较,则必然偏离很大.为此,我们考虑用下述 方法^[9]定出 a_i 的最佳值 \bar{a}_i , 如用 $E_j^T(I, a_i)$ 代式(6)中 E^T ,

$$\det | \mathscr{H}^{(3)} - E_j^T(I, a_i) \cdot \mathbf{1} | = F(E_j^T, I, a_i) = 0;$$
(7)
如用 $E_j^r(I)$ 代人(6)式,有

$$\det |\mathscr{H}^{(3)} - E_j^{\epsilon}(I) \cdot \mathbf{1}| = F(E_j^{\epsilon}, I, a_j).$$
(8)

定义

$$Q_F = \sum_{I,j} |F(E_j^e, I, a_i) - F(E_j^T, I, a_i)|^2 = \sum_{I,j} |F(E_j^e, I, a_i)|^2, \qquad (9)$$

 $F(E_{i}^{c}, I, a_{i})$ 一般不为零. 显然,只有在 $F(E_{i}^{c}, I, a_{i})$ 中的 $E_{i}^{c}(I)$ 等于选定 a_{i} 时的 $E_{i}^{c}(I, a_{i})$ 值时才为零,这在一般情况下是不可能的.

用类似于最小二乘法的方法,对 Qr 求极值

$$\frac{\partial Q_F}{\partial a} = 0, \qquad (10)$$

即可定出一组最佳参数值 ā,.

将ā,代人式(6)得到 E;(1,ā,),或 *迷*⁽³⁾ 对角化得到 E;(1,ā,) 与 C(1,ā,, E;).

四、计算结果

我们用上述方法计算了表 2 所列的核

表 2

	154 64 Gd	¹⁵⁶ ₆₆ Dy	¹⁵⁸ €r	¹⁵⁸ ₆₆ Dy	164Er	'70Yb	¹⁷² 72Hf	¹⁷⁶ ₇₂ Hf	184Os[14]
$E_1(4^+)/E_1(2^+)$	3.014	2.934	2.745	3.207	3.277	3.292	3.247	3.285	3.204
能级数	19	22	15	14	19	11	13	16	16
2 Δ _n ^[15]	2.211	2.467	2.49	2.236	2.201	1.851	2.140	1.708	2.187

24, 是根据文献[15]的质量表计算的奇偶质量差.

表中前三个核的中子数 N = 90,为转变区核,其余为形变核, $\frac{E_1(4^+)}{E_1(2^+)} \gtrsim 3.20$.所用的实验能级^[6]数见表,一般都比参数个数大得多.中子实验对能列在表中最后一行.

计算结果: 这两类核都能符合实验转动能谱,见图 4. 图 4(a) 为转变区核的能谱, 图 4(b) 图 4(c) 分别为形变核谱.

图 4 转动三带能谱(光滑曲线为计算值,×实验值)

目前, E₁(*I*)转晕带上实验数据较多, E₂(*I*)上有一些实验数据, 对于 E₃(*I*),除 ¹⁵⁶Dy 外^[16],尚无实验值与之比较.

定义[6] 《和 10 为

$$2\mathscr{I} = (4I - 2)/\Delta E_1(I), \tag{11}$$

$$\omega^{2} = (2I-1)(\Delta E_{1})^{2} \left[\frac{27}{64} \times \{ (\hat{I}^{2})^{2/3} - [(I-2)(I-1)]^{2/3} \}^{3} \right]^{-1}.$$

这里 $\Delta E_1(l) = E_1(l) - E_1(l-2)$, 为一级差分. 又定义

$$Q_E = \sum_{j,l} |E_j^{\epsilon}(l) - E_j^{T}(l, \bar{a}_i)|^2, \qquad (12)$$

以便于和 Q_F 作比较, Q_E 也比 Q_F 更直接地反映出计算结果与实验符合的程度.

	154Gd90	¹⁵⁶ ₆₆ Dy ₉₀	¹⁵⁸ Er ₉₀ ¹)	¹⁴⁶ 68Er96	¹⁷⁰ Yb ₁₀₀	¹ , () S108
Qr	0.596-2 2)	0.203-1	0.253	0.278-2	0.141-4	0.210-2
QE	0.183-1	0.820-1	0.234-1	0.264-1	0.401-3	0.565-2
<i>a</i> ₁	0.170-1	0.178-1	0.283-1	0.144-1	0.140-1	0.187-1
<i>d</i> ₂	-0.139-2	-0.286 ⁻²	0.312-2	0.279-3	0.295-2	0.173-3
<i>a</i> 3	0.873-2	0.782-2	0.851-2	0.747-2	0.660-²	0.832-1
a 4	1.450	1.476	1.496	1.265	1.582	1.541
<i>a</i> 5	0.427-1	-0.284-1	0.610-1	0.137-1	0.182-2	0.182-1
a,	0.200-4	0.202-4	0.117^{-3}	0.652-5	0.798-3	0.138-4

表 3 计算的三带能谱的参数和均方差

1) $h_{11} = a_1 \hat{l}^2 - a_6 \hat{l}^4 + a_1 \hat{l}^4$; $a_7 \oplus h_{11}(l_c) = h_{12}(l_c)$ 确定, $l_c \oplus (\Delta^2 E_1(l) 极小)实验值,仍是六个可调参数.$ $2) <math>0.596^{-2} = 0.596 \times 10^{-2}$ 余皆类同.

表中单位: Q_F , (MeV)⁶; Q_E , (MeV)²; 其余都是 (MeV); 表中K 为混杂矩阵元 $K_{12} = a_2 \mathbf{i}$, $K_{23} = a_3 \mathbf{i}$ 的计算结果.

158Dy92	$E_1^{o}(I)_{(KeV)}$	J ^e (MeV-1)ω ^{e²}	$\cdot (\omega^e)^2$	$E_1^T(I)$	J ^T	$(\omega^T)^2$	$E_2^T(I)_{(keV)}$	$E_{j}^{\mathrm{T}}(I)_{(\mathrm{KeV})}$
2+	98.94	60.6	0.0019	· 95.54	62.8	0.0018	1084.5	1130
4+	317.26	64.1	0.0118	; 312.28	64.6	0.0016	1237.0	1300
6+	637.88	68.6	0.0256	636.25	67.9	0.0261	1411.2	1650
8+	1044.0	73.9	0.0411	1047.8	72.9	0.0422	1648.8	2110
10+	1519.9	79.8	0.0565	1524.9	79.6	0.0568	1949.7	2710
12+	2049.2	86.9	0.0700	2047.3	88.1	0.0681	2314.0	3420
14+	2612.3	95.9	0.0793	2601.8	97.4	0.0768	2741.6	4260
16+	3190.5	107.3	0.0835	3189.6	105.5	0.0863	3232.7	5230
18+	3781.5	118.4	0.0873	3786.9	117.2	0.0892	3833.0	6320
20+	4407.3	124.6	0.0979	4404.6	126.3	0.0954	4584.9	7540
22+	5085.4	126.8	0.1149	5085.7	126.3	0.1159	5538.9	8880
24+	5820.0			5830.1	126.3	0.1385	6840.2	10340

表 4 原子核的三带能谱和转晕带的 ダ 和 ω.

这里只举1个核为例,列表4示之.

图 5 列出了两个核的 $\mathscr{I} \sim \omega^2$ 图,以及 $\Delta^2 E(1) \sim 1$ 二级差分图.

五、分析讨论

1. 这两类核都符合实验能谱,见图及表.

658

对变形核,符合好, Q_E 小.这主要是形变核的基态带等较近于刚性转子带,而 N=90的三个转变核则偏离较大.

对变形核,能较好地再现观测的 $\mathscr{I} \sim \omega^2$ 图和二级差分图.

从表 3 可见,符合程度 (用 Q_E , Q_F 表示)与表 2 中所列的 $E_1(4^+)/E_1(2^+)$ 有关,这个 值大,就符合得很好.

2. 计算定出的参数值较合理(表 3)

 a_1 为基态带的转动惯量参数, $a_1 = \frac{1}{2 \mathcal{I}_g}$, 与实验值相近.

*a*₂, *a*₅ 为混杂矩阵元 *K*₁₂ 和 *K*₂₃ 中的参数反映带间相互作用的大小,与实验值差几倍 或甚至差数量级.

 a_3 , a_4 为超带的转动惯量参数 $\left(a_3 = \frac{1}{2\mathscr{I}_s}\right)$ 和带头能量.我们计算的 ¹⁵ Dy, ¹⁵Gd 的 $a_4 \approx 1.5$ MeV 与其它作者的计算结果相近^[2,3],目前还无完整的实验值与之比较.只有几条超带实验能级的外推值,但由于产生超带的机制不清楚,这种外推有多大可靠性,很难确定.

a6 为基态带偏离刚性转子带的量度参数有实验值可资比较.

在计算中, a_1 , a_3 , a_4 , a_6 的值变化很小, 不管混杂矩阵元为何种形式. 但 a_2 , a_5 可变 化很大范围, 而均方差 Q_F , Q_E 变化不大, 这些都是可以理解的.

3. 关于带间相互作用

如考虑双带交叉,带间相互作用为 K_{12} ,则混杂以后的 $E_1(I)$ 与 $E_2(I)$ 为

$$E_{1,2}(I) = \frac{1}{2} \{ (h_{11} + h_{22}) \pm \sqrt{(h_{11} - h_{22})^2 + 4K_{12}^2} \}, \qquad (13)$$

在交叉点 I_c 处, $h_{11}(I_c) = h_{22}(I_c)$. 所以

$$\Delta E(I_c) = E_2(I_c) - E_1(I_c) = 2K_{12}(I_c), \qquad (14)$$

这结果与模型无关.第三带的存在(见图1)对这种结果(只要 h₃₃(I_c)离交叉点较远)影响 很小.

从实验上得到的¹⁶⁴Er($I_c \approx 16$)的 $K_{12}(I_c) < 74$ KeV;¹⁵⁶Dy($I_c \approx 16$)的 $K_{12}(I_c) \approx$ 12.5 KeV等,这种超带与基态带的混杂,从现有实验值看,一般较小,

我们在计算中用了三种 K_{lm} 相互作用(式(5))第一种 K_{12} , K_{2} , 为常数;第二种 $K_{lm} \approx I$ (相当于柯氏力效应);第三种 $K_{lm} \approx I^2$ (相当于离心拉长效应).

前两种计算结果相近,结果都比较好,所定的参数值较合理(见表 3), *Q_F*, *Q_E* 较小. 第三种计算结果较差.表明混杂主要是前两种形式.这个区域核的超带的产生可能是由 于柯氏力转动重排效应⁽¹⁾.带间混杂就可能是第二种形式.在计算 *B*(*E*2)约化跃迁几 率时,曾有人^(17,11)用第一种形式的混杂.所以,为什么前二种结果相近,有待于进一步探 讨.

4. 关于 N = 90 的三个核

中子数 N = 90 的三个转变核 ¹⁵⁴Gd, ¹⁵⁶Dy, ¹⁵⁸Er, 计算的超带的带头能量 a_4 和转动惯 量 $\mathscr{I}_s \left(\mathscr{I}_s = \frac{1}{a_3}\right)$ 相近(表 3), $a_4 \approx 1.5$ MeV, $a_3 \approx 8$ KeV. 这说明,这里是中子对超带 的产生作出了贡献,且是由相同机制产生超带的.这和认为这三个核的超带是由同一轨 道上的 $i_{13/2}$ 中子对所贡献^[160]相符合.

这三个核的实验中子对能 2△, 也相近(表 2).

Hf 的三个同位素 ¹⁷²Hf, ¹⁷⁴Hf, ¹⁷⁶Hf 的超带性质相差很大, *a*₃, *a*₄ 值各不相同. 表明 这三个核的超带不可能是由质子、及其由同一种机制所产生,而可能是中子的转动激发所 产生,

综上所述,我们简单的讨论和分析了带交叉图象,表明可以用它来解释 $\mathscr{I} \sim \omega^2$ 图上的回弯现象,并用转动三带交叉混杂作了计算.

计算中主要的近似是矩阵元的假设,例如 h_{11} 含有 f^2 的高次项,但 $h_{33}(\beta 带)$ 却是刚性转子,这是不够的.这就使 ¹⁵⁴Gd, ¹⁵⁶Dy 等核的 Q_E 较大. 当然这是唯象分析的缺点,要增加 f^2 的高次项,就要增加可调参数.

我们所用的定可调参数的方法也与常用的方法不同.

一般说来,"基"带 h_{11} 的变化,立即影响计算结果,但仍是 K_{1m} 为常数和 $K_{1m} \approx 1$ 时计算结果与实验值符合好.因为假设了 $K_{\beta g}$,即 $K_{13} = 0$,就不可能给出转晕带的 $\Delta^{3}E_{1}(I)$ 中那个次极大.

计算结果给出了转动三带的一些信息.例如:超带的带头能量、转动惯量,超带与基 态带、β带(或γ带)的交叉点、混杂大小等.

这里给出的 E₃(1) 值,因无实验值比较,未加讨论.

对于 *K*_{*lm*}, 一般在估计的实验值的量级内. 进一步的探讨要考虑电磁跃迁的约化几 率以及 *r* 带的影响等问题.

参考文献

- [1] A. Molinari, T. Regge, Phys. Lett., 41B (1972), 93.
- [2] R. A. Broglia et al., Phys. Lett., 57B (1975), 113; Phys. Lett., 50B (1974), 295.
- [3] Y. EL. Masri, J. Vervier, Nucl. Phys., A279 (1977), 223.
- [4] F. S. Stephens, R. S. Simon, Nucl. Phys., A138 (1972), 257; F. S. Stephens. Rev. Mod. Phys., 47 (1975), 43. 王正大等,高能物理与核物理,3(1979),348.
- [5] B. R. Mottelson, J. G. Valatin, Phys. Rev. Lett., 5 (1960), 511.
- [6] R. O. Sayer et al., Atom. Data. and Nucl. Data Table, 15 (1975), 85; M. Sakai, Atom. Data and Nucl. Data. Table, 15 (1975), 513.
- [7] O. C. Kistner et al., Phys. Rev., C17 (1978), 1417.
- [8] N. R. Johnson et al., Phys. Rev. Lett., 40 (1978), 151.
- [9] 顾金南,"数学的实践与认识",待发表.
- [10] J. Vervier, Nucl. Spectro and Nucl. Reaction with HI (1976), 442.
- [11] T. L. Khoo et al., Phys. Lett., 31 (1973), 1146; R. M. Lieder et al., Phys. Lett., 49B (1974), 161.
- [12] L. K. Peker et al., Proc. Int. Conf. on Nucl. Struc., (Tokyo, 1977), p. 110.
- [13] R. R. Whitehead, Nucl. Phys., A182 (1972), 290; T. Sebe et al., Ann. Phys., 51 (1969), 100.
- [14] A. Neskakis et al., Nucl. Phys., A261 (1976), 189.
- [15] A. H. Wapstra et al., Atom. Data and Nucl. Data Table, 19 (1977), 175.
- [16] F. W. De boer et al., Nucl. Phys., A290 (1977), 173.
- [17] F. Kearns et al., Nucl. Phys., A278 (1977), 109. I. Y. Lee et al., Phys. Rev. Lett., 37 (1976), 420.
- [18] L. K. Peker et al., Proc. of Int. Conf. on Nu:1. Struc., (Tokyo, 1977), p. 397.

THE ROTATIONAL THREE-BAND INTERACTION FOR EVEN-EVEN NUCLEI

GU JIN-NAN WANG ZHENG-DA (Institute of Modern Physics, Academia Sinica)

ABSTRACT

The interaction of the rotational three-band, the superband, the g band and the β band (or γ band), for even-even Nuclei is discussed.

The Hamiltonian matrix is diagonalized after solving the secular equation by which the parameters in the matrix elemens are determined. The three- band spectra for more than ten nuclei have been calculated. The calculated results are found to be in resonable agreement with experimental data, and some informations of three-band mixing are obtained.