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Nonperturbative Quark Propagator
and Study of Nontrivial 0*-Dependence
in Nucleon Structure Functions
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In consideration of the lowest-order nonperturbative effect due to the quark condensate
{(gq) and the gluon condensate (GG) on the quark propagator, we calculate the QCD
nonperturbative quark propagator under the chain approximation. Using the obtained
nonperturbative quark propagator, we analyze the nonperturbative effect in the nucleon
structure function and show the nontrivial Q°-dependence in the nucleon structure
function.
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1. INTRODUCTION

Within the framework of the quark parton model (QPM) [1], deep inelastic lepton-nucleon
scattering is viewed simply as an incoherent sum of elastic scatterings of leptons on "quasi-free”
quarks. The structure function could therefore be expressed as a sum of parton momentum
distributions weighted by the square of the charge of corresponding partons (quarks plus antiquarks).
This is a good description for the large momentum transfer deep inelastic process. In order to test this
in experiments, various sum rules were put forward. One of them which corresponds to the
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nonpolarized lepton-nucleon deep-inelastic scattering process is the Gottfried sum rule defined as [2]
L dx p n
So= [, S IF®-FE®l, ()

which would be S; = % in the QPM [2]. But the NMC Collab. found that S; = 0.235 + 0.026 [3],

which deviates from that expected by the quark parton model. In addition, the Ellis-Jaffe sum rule is
defined as [4]

I - j dxgf (v, @)
where

Py 1 | 4 L1 L1
& ) 5 [§Au(§) §Aci(x) §AS(JC)], €))

Au, Ad, and As are the spin fractions of the u, d, and s quarks, respectively (normalized to 1). The
experimental value of I'} also deviates from that expected by the QPM [5]. The experimental data of
both the Gottfried sum and the Ellis-Jaffe sum are less than those expected by the QPM. Many studies
have been made for explaining this deviation [6,7]. In this paper, we investigate the nontrivial
(-dependence of the nucleon structure function. In consideration of the lowest-order nonperturbative
effect due to the quark condensate (gq) and gluon condensate (GG) on the quark propagator, we
calculate the QCD nonperturbative quark propagator under the China approximation. Using the
obtained nonperturbative quark propagator, we analyze the nonperturbative effect in the nucleon
structure function and show the nontrivial Q>-dependence in the nucleon structure function. Next, the
nontrivial Q*>-dependences of the Gottfried sum and the Ellis-Jaffe sum are discussed. Finally, the
discussion and summary are given.

2. NONPERTURBATIVE QUARK PROPAGATOR

Let us start with writing the free quark propagator

1S (x =1 =(0|Tg ) g’ »]0), O]

where «, 8 are color indices and i, j are Dirac spinor indices. The free quark propagator can be
expressed in momentum space as

St @ =p—m, ®)

where my_ is the perturbative (current) quark mass which can be neglected in the large momentum
transfer process. Either the experiment of the NMC (Q* = 4 GeV?) for measuring the Gottfried sum
or the experiment (Q* = 10.7 GeV? done by Adams [5] for determining the Ellis-Jaffe sum are
performed at the medium energy region. In this region, the nonperturbative effect induced by the QCD
vacuum cannot be underestimated. Generally, attention is paid to the effect of the condensates of
quarks and gluons on the quark and gluon propagators [8,9]. In this paper, we only consider the
contributions of the lowest dimensional condensates, i.e., dimension-3 quark condensate see Fig. 1(b)]
and dimension-4 gluon condensate [see Fig. 1(c)]. In the calculation, the QCD sum rule method [10]
is used to consider both perturbative effect and nonperturbative effect in the operator product
expansion (OPE) where the nonperturbative effect is expressed by the nonzero average expectation of
the composed operators such as (gq) and (GG). It is generally accepted that these nonzero vacuum
expectations reflect the nonperturbative properties ofthe physical vacuum. The lowest-order quark and
gluon condensates are generally regarded as parameters in the OPE and the higher dimension
condensates are neglected.
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Fig. 1
The nonperturbative quark propagator including:
(a) The perturbative free quark propagator, (b) Lowest-order
correction due to the nonvanishing value of {(gg), (c) Lowest-
order correction due to the nonvanishing value of (GG).

{a)

To calculate the nonperturbative quark propagator, we first consider the nonperturbative vacuum
expectation value (VEV) of two-gluon fields. In the calculation, the fixed point gauge is taken, i.e.,

x*B, (x) =0, (6)
and then,
B,() = _x"G  (0) + ._.._x "x°3, G, (0) + ___1__.x"x""-~xv"av -8, GAO) +, (D
T+2) I
obviously,
B, (0) =0. (8
Introducing covariant differential )
D, =4, - igB}°, " ®

where ¢ = —’g (@ =1, 2,-, 8) are the Gell-Mann matrices, then Eq.(9) can be re-expressed as

B/ () = 3 ¥ G () + xxng [D, 0), G, (0)]
(10)

+x xox’ {D,(0),[D,0), G 0)]} +-

In the following calculation, only the first term in the expansion of BZ (x) is taken, i.e., we assume that
the O (|x|?) terms are small enough to be neglected for short distances |x|. So one can obtain

(0B ) B 2)] 0)yp = ly*zﬂ (0] G (0) G5, (0] 0) +

“15¢” 2% (83,840 — 8n8,) (GG) +
where
(GG) =(0] G (0) G, (®]0). (12)

By using the similar method to the expansion of two-gluon fields, the nonperturbative VEV of
two-quark fields can be expressed as

(01:97 ) g @:]0)yp
=(0]:27(0)¢f (0):]0)

- o*=2(0]:¢7 [D,(0) g, (®]°: | 0) 13

[yzy’+ 2oy Z:i (0]:¢7(0)[Dy(0)D,(0) g, (M1*: ] 0) + -,
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where

(01:3° © ¢* ©:]0) - ( ]( "’)<0[ TOq =275, g
with
(7g) = (0] :37 © ¢f ©:]0), (15)

In Eq. (14) color superscript indices («, ) will always lead to a trivial factor .5;. ; and spinor

indices (r, n) to 2. For the case in which the momentum transfer is large enough, or the distances |y|

and |z| are small enough, the first two lowest terms would be taken and the higher order terms can
be neglected. Now, we express the VEV of the second term in Eq.(13) as:

(0]:97[D,(0)q,(®F:]0) =K (v,),,, (16)

In order to determine the specified form of K, we contract (v, ),, into both sides of Eq.(16) and
introduce the motion equation

Dq=—imgq, (17
and then
(—im) &~ - (qq) = 16K, (18)
Therefore ‘
(0:171D,© ¢, 0P |0) = 222 (74) v,),,. (19)
Substituting Eq.(14) and Eq.(19) into Eq.(13), one finds
©1:6; 07 @:10y - - EZD f1 - G =DL L 0)

Now let us calculate the contributions of the lowest quark and gluon condensates to the quark
propagator. The modification of the quark propagator in Fig. 1(b) can be expressed as:

(2)(p)] = 4 J' d4xexpxj d4yj d*z
X [(0]TgZ () G 0) | 0) gy Vi Moa @

X(0]:qy )T @:100p ¥y N (0] Tg @) g7 (0)|0),,
X (0| TB, () BS (2)]0)

pcn] 3

where the normal product results from the time-order product expansion of quark fields.

Tqg(x) @ ) = {0|Tq () § 0)|O)per + :9 ®¥) 7 O):, (22)

where the first term on the right-hand side gives the usual free quark propagator, while the second
term no longer vanishes since the nonperturbative structure of the QCD vacuum. The perturbative
time-order product in Eq.(21) corresponds to the perturbative propagator in the ordinary perturbative
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theory, i.e.,
_ T 5
(0|Tq:(x)q,.’(y)1o)pm=iawI_‘.i__‘l.e—w'u-w B MO | 23)
@m)t q*—m
and
: d*k - 8, EkK
0|TB/ () B/ @ |0),, =id" LA LSRR 24
(0| TB,) ) B @) | 0),, j(zﬁ { - 24)

where £ is the gauge parameter. In order to complete the integral in Eq.(21), we write the factor e? '
as e @~ P 0 -2 ¢z and change integration variables from [d*x d*y d*%z] to [d* (x — y) d* (v —
7) d*z]. Integrating Eq.(21) one finds

ptmg lg'/lpa;tﬂ,, p
SLZ)(P) [ m[_‘l“[ 20nF ])’in

x{f d“(y—z)y d%<01: ¢ ( y)gP(D): [0 pei P~ =) 25)

gﬂv ‘:kk p+mL
X —_/F- e K y” pz—mi jl.

The full quark propagator S (p) is related to its self-energy via the relationship

Sp(p) =[p—- m - E(p)]ﬂl
= (p - m[,)_l + (P - mL)‘_l z (P) @ - mL)_l * o (26)
=@ -m)T ST @

The self-energy corresponding to Eq.(25) is

YO ) =@ —m), IS @ @ —m),

&N [ 0 -0

d*k
s axa
a2 J

@7
X {0]:gr 0)q7 @):]|0)ype’® 0073
X [—g, Kk +Ek kv,
Substituting the VEV of Eq.(20) into the above equation and by using the identity
[¢o-2[d%*ly-0-2Vele=P 0210
) [_i“";‘}jj a0 =) [ dkete 0721 (28)
P

=2 [“I'Y ——] F@).,
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we finally obtain
g (qq) )
YV =21@¢-H-U-pmpl/p1, 29)

where the index (b) means this conmbution is due to Fig. 1(b). Similarly, we can derive the
self-energy, due to Fig. 1(c),

(30)

o 2(GGYm, (p? = m p)
X0 o 2@ -m .

Considering the contributions from Figs. 1(b)-1(c), the inverse of the quark propagator can be
expressed as

2= 2 2
5 ) =p [1+gs I LN ACIL }
o 12 - miy

€2y

Ny 8l4DE =D & (GG mp?
- 9p? 12 (p? — m)? ’

It is necessary to emphasize that m coming from the equation of quark motion {Eq.(17)] includes
the effect of the condensates of nonperturbative QCD and is different from the pure perturbative
(current) quark mass my. In a common sense, the current quark mass can be neglected. This is
equivalent to neglecting the contribution from the gluon condensate. So Sy ' can be rewritten as

S @) =p-MQP), (32)
with
< (q9) -
Mp)=392 g g A=Dom | (33)
9p* p?
While requiring the OPE parameter mass to be the pole of the (gg)-corrected quark propagator, i.e.,
g =
& (qq)
M o = e =ML, (34)
@ lpn= =

We can obtain the solution of m which is independent of the gauge parameter £ from the above
relation,

1/3
dra (0D (g

m=M(p)[p=m=l___i£.§__)_(_‘_12 ] , 35)

Thus, the (gg)-corrected quark propagator can be written as

173

- dra (0D (g

ST () =p — ___iﬁg_)_(ﬂ] : (36)
where the strong coupling constant
o) =27 (37
ﬁolnF

with 8, =11 — ;NF for N; = 3 and the dimensional parameter A = 0.25 GeV.
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3. NONTRIVIAL @*-DEPENDENCE OF NUCLEON STRUCTURE FUNCTION
Consider the inclusive lepton-nucleon scattering

I+ N-=1 +X, (38)

The hadronic structure is entirely contained in the tensor W,

W,,= (21:)3; (P|J,|X){X|J,|PY3*(Py-P-q)

_ 9.9, 1 P-g P-q
o gl e e

w,,

) (39

Here M is the mass of the nucleon. If W,, is given, we can extract W, and W, through the following

formulas:
1 v? vt
Wl-.i[cz-[l—?}q} [1—?] : (40)
1 y? v: )2
| weapesfowlel ) @
with
C, = w, @ (42)
and
P*P"
C, =_M2 W#V, (43)

We assume that in the deep inelastic scattering process, the high-energy lepton interacts with the
"quasi-free” quarks in the nucleon. However, the quarks are effected by the quark and gluon
condensates in the QCD vacuum.
With the impulse approximation and the incoherence assumption, the one-parton contribution to
W, is '
w,, =(27r)3-;-2 S Ap.s|1p' 'Y p' s 1, |p,s) 8@ —p—q)

58 P

2 ¢ d3p’ 1 @9
=6l [ 5 80 P =D Trly, @ My, @ e ml,
According to the trace theorem w,, can be also equivalently expressed as
Vool [ SE 8¢ —p =) 3 Tel, @ —m 7, @ = m)], 45)
134 2p/0 2 '3 v
i.e.,
347 _
W=l [ SE 80 —p -0 ey, 07,5 @, (46)
u 2p o 2 [

where iSg (p) is the quark propagator and ¢; is the charge of the quark in unit of e. In order to reﬂect
the effect of the quark and gluon condensates in the QCD vacuum on the quark state, we take S¢!
Eq.(46) as that in Eq.(36). We adopt the parton picture in which the parton 4-momentum is expressed
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as
pr=y O=y=<l. 47

By means of Egs.(40)-(41), we obtain the contribution of quark i to the nucleon structure function F,
= VWZa

P () =2Mx%e8 (y — x) Ry, (@Y, 48)

with Bjorken variable
-2 ‘ 49
Sy (“49)

and

(50

4 [4n o <Eq>)zl3
> .

RNP (QZ) =1- ‘é— 3
Suppose that the nucleon state contains f; (y) dy parton states of the type / in the interval dy, then
F=X [, 00 F 0 51

As for the normalization of f; (y), it is noteworthy that a parton state has 2p, partons per unit volume,
while a nucleon state has .:7“ nucleons per unit volume. Therefore, in one nucleon, the number of
partons of type i, in the interval dy must be multiplied by

2p,
(Py/ M)

=2My, (52)

i.e.,
q; ) dy = 2Myf; (y) dy. (53)

where g; (y) is the quark parton distribution with the constraint of the parton flavor number
conservation. Summing the contributions of all quarks in the nucleon; we obtain the structure function
of the nucleon

F,=Y ¢0xe/ Ry (@) =Y 3, () xef, (54)

where

3 (x) = g; (@) Ry (). (55)

Obviously, g; (x) is different from g, (x) since g; (x) represents the probability distribution of quarks
of type i and satisfies the parton flavor number sum rule, but g; (x) does not. From Eq.(54), we see
that the structure function, with a reducing factor of Ryp (C?), is no longer simply the sum of the
parton momentum distributions multiplied by the square charge of corresponding partons (quarks plus
antiquarks) in the nucleon at finite Q. This Q*-dependence in the nucleon structure function is different
from the normal one, so it is designated as the nontrivial Q*-dependence.

4. NONTRIVIAL @*-DEPENDENCE OFNUCLEON STRUCTURE FUNCTION ANDPARTON
SUM RULES

4.1. Nontrivial @*-dependence in the Gottfried sum rule

Equation (54) indicates that the nontrivial 0*>-dependences in both neutron and proton structure
functions are the same. To show explicitly the nontrivial Q*-dependence in the nucleon structure
function, we give the values of Ry, (Q?) for various Q? in Fig. 2. In the estimation of Ry (@), we
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Fig. 2
The value of Ry (Q%) for various Q7.

have taken the standard phenomenological value of the quark condensate (gg) = —(0.25GeV)’
obtained from the QCD sum rule [10].

- If we adopt the assumption that sea quarks are SU (2) symmetry, then by using Eq.(54), the
Gottfried sum rule can be re-expressed as

_ Ry (0)
3

_ Ry (0
3 b4

S, j 0‘ [u, (¥) — d, (x)] dx

(56)

So the Gottfried sum rule has the same nontrivial *-dependence as shown in Fig. 2 (except a factor
%). In the small @ region there is an obvious suppression compared to that of —31—, as expected by the

- quark-parton model. In our opinion, the suppression of the Gottfried sum rule is partly due to this
nontrivial Q*-dependence.

4.2. Nontrivial ¢*-dependence in the Ellis-Jaffe sum rule

The deviation of the Ellis-Jaffe sum rule from experimental data is mostly related to the nontrivial
Q*-dependence is the nucleon structure function. Now let us discuss qualitatively this problem by
setting up the relation between the sum I'} of the Ellis-Jaffe sum rule and the sum S;; of the Gottfried
sum rule. .

As is well known, in the limit of 0* = 0, the axial couplings of the baryon octet are fairly
described in terms of the valence quarks '

u =1+F, u'=1-F, (57)

dvle'*'I;_D, dv$=1—§+D' (58)

The experimental values of F and D are [11]:

F =046 £0.01,D =0.79 £ 0.01 (59) -



480 High Energy Physics and Nuclear Physics

For the sake of simplicity, we approximate the experimental values of F and D by fractions, i.e.,

F=_21.,D=Z_, (60)
and then,

uv’=§-,u:=%, ©1)

d; % d; % 62)

Assuming that the parton distribution at a given larger ¢ is dependent of its value at @* = 0, i.e.,

p &) =p &, p (63)

here p describes the momentum smearing effect due to g-q interactions. For a given x, the smearing
increases as a function of p,. The larger the value of p, is, the broader the range of the smearing of
D,. Similar to Ref. {12], we have,

u*(x)=%[d*<x)+d*<x>]=%d(x> (64)

and
Au () =ut(x) - ) =u®x —d®x), (65)

The above formula reflects the relationship between the polarized u-quark distributions Au (x) and the
unpolarized distributions of # (x) and d (x). In consideration of the facts that Ad, (x) = % Au, itself

is smaller than Au,, and the Aw, (x) term in g% (x) is multiplied by an additional factor 1/4, the
contribution of Au, (x) to g8 (x) can be neglected. Without considering the contribution of the
polarization of sea quarks, we obtain

xgf )= 2[Ff @)~ F )], (66)
After integrating over x, we obtain
rf=25. (67)

Equation (67) gives a crude relation between the Ellis-Jaffe sum I'} and the Gottfried sum Sg.
Therefore, we conclude that the nontrivial Qz-dependence of the Ellis-Jaffe sum rule is the same as that
of the Gottfried sum. Thus we would expect a measurable 0°-dependence in both the Gottfried and
Ellis-Jaffe sum rules.

5. DISCUSSION AND SUMMARY

The nontrivial @?-dependence of the nucleon structure function results from the nonperturbative
effect due to the quark condensate in the QCD vacuum. The magnitude of the Q*-dependence of the
nucleon structure function is of the order 0.06 GeV*/Q?* which is consistent with the Q*>-dependence
as observed in experiments and as estimated from the perturbative QCD and higher twist effects in the
other parton sums. For the whole investigation of the Q?-dependence of the nucleon structure function,
the nontrivial Q?-dependence should not be neglected.
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We investigate the modification of the QCD vacuum to the quark propagator and give the
nonperturbative quark propagator which is independent of the gauge parameter £. By using the
obtained nonperturbative quark propagator, we re-analyze the nucleon structure function. The results
show that the nonperturbative effect results in a nontrivial Q*-dependence in the nucleon structure
function. We expect that this nontrivial 0*>-dependence can be measured by means of the Gottfried sum
rule and the Ellis-Jaffe sum rule.
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