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Infra-red Renormalisation Group Calculation of
the O(N) Model in the Broken Phase
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(Department of Physics, Peking University, Beijing 100871)

Abstract The infra-red renormalization properties of the O(N) model is studied to two
loops. The calculation is done within a mass dependent renommalization scheme. The
mass-dependent one-loop renormalization group coefficients are obtained and the two-loop
coefficients are calculated in the infrared limit. We observe cancellations within the
framework of field theory which make the two-loop beta-function coincide with the
one-loop beta-function in the infra-red limit.
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1 Introduction

The O(N) model in the broken phase has Goldstone particles due to the spontaneous
breaking of the O(N) symmetry to O(N-1). It has been understood that these Goldstone
particles dominate the low energy behavior of the theory. At N= 4, this model is the
same as the Higgs sector in the minimal Standard Model. It also shares the similar
symmetry breaking pattern as that of low energy QCD.

When studying the low energy limit of the theory, the effective Lagrangian approach
has béen commonly used. A well-known successful example of the effective Lagrangian
goes back to low energy QCD phenomenology where Chiral Perturbation theory was
applied. For a review of this, see Ref. [1] and references therein. Using the symmetry of
the theory, Chiral Perturbation theory can make all low energy predictions in terms of a
few phenomenological coupling constants. These low energy predictions should agree with
those obtained with a direct field theoretical calculation in the low energy regime. At
higher energies, roughly around the rho meson mass in QCD, unitarity is violated in
Chiral Perturbation theory and effective Lagrangian as a derivative expansion looses its
meaning. It is therefore desirable to have a direct comparison between Chiral Perturbation
theory and the direct field theoretical calculation. However, this is not feasible in QCD
due to the nonperturbative feature of the theory at low energies.

In the case of the O(N) model (also known as the linear sigma model), it is believed
that, up until the scale of the mass of the sigma particle, all low energy Green functions
of the theory can be calculated using the effective Lagrangian approach. Within the
framework of field theory, unlike QCD, O(N) model is perturbative in the low energy
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regime. Therefore, it is possible and interesting to compute the low energy quantities
using both approaches. There is one subtlety when performing the calculation within the
field theoretical approach, namely, the potential infra-red divergences in the theory due to
Goldstone modes. In this letter, we compute the full mass-dependent renormalization group
coefficients to one-loop and the leading infra-red behavior of the renormalization
coefficients to two-loop within the field theoretical approach. In section 2, the Lagrangian
for the O(N) model in the broken phase is given and three mass-dependent
renormalization conditions are introduced. The full mass-dependent renormalization
coefficients are then obtained to one-loop. The physical significance of the result is also
discussed. In Section 3, we calculate the two-loop diagrams that contribute to the two-loop
renormalization coefficients in the infra-red limit. It is shown that these dominant two-loop
diagrams cancel each other yielding a vanishing result to the renormalization group
coefficients in the infra-red limit. The significance of this cancellation and the comparison
with the effective Lagrangian approach is also addressed.

2 The O(N) Model in the Broken Phase

We start with the standard Lagrangian for the O(N) model in D=2 w space-time
dimensions,
1 aa 2 ia /'LAZS 5
L=> 0,4°0,9"~ 5 ¢°° + 5 — @9y + 0L, M

6/1A2‘
=—a¢5¢— ¢¢+ @"9"’
where the basic field ¢ is a O(N) multlplet. In this letter, the conventional dimensional
regularization is utilized for the ultra-violet divergences. Therefore, an extra factor A%* is
appended to the quartic interaction, where A is an arbitrary scale and ¢ = 2 — D/2. In the
broken phase, we perform the following shift of the field variables

¢ =" a=12---N—1, (@))
¢ " =vA '+ 0
YT T

After the shift, the Lagrangian looks like

L=L,+L, +38L, 3)
1 m2 2 1 a a
L0=§a,,aaua+70 +-2—8#7r 0,7,
_/IUAE 2 2 /1/126 2 2.2
m = 3 g(oc”+ 7))+ 2 (o + 77y,
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8AvA°f 2 2 SAA%
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We now impose the following three mass-dependent renormalization conditions at some
arbitrary scale x@®%:

(o’ + 77,

.

dv=0, “4)
I (p* = &% = Z(x* + m'(x?)
2 7= 1
These conditions turn out to form a convenient choice of renormalization scheme. The
first condition fixes the vacuum expectation value to its tree value hence eliminates all the
tadpole diagrams. Due to the potential infra-red divergences for the ¢ correlation function
at low-energies, the mass parameter of the o
¢)) —@ —q — a particle is defined at some nonvanishing scale
k. This should render the theory both infra-red
and ultra-violet finite. Through these renorma-
lization conditions, the mass of the o particle
Q 1‘; m(x) and the coupling constant A ( x) will
R " depend on the scale k. Of course, physics
2 does not depend on the arbitrary scale x-a fact
_“Q _‘ — ® that is represented by the renormalization
B group equations. The evolution equations for
the mass of the o particle and the renorma-
3) s lized coupling constants are determined by the
renormalization group coefficients which could
be calculated using perturbative loop expansion.
The calculation to one-loop is straightfo-
rward and the full mass-dependent renormali-
zation group coefficients can be obtained. The
corresponding Feynman diagrams are listed in
Fig. 1. The renormalization group -coefficients
are defined by

Fig.1. The one-loop diagrams that enter
the renormalization conditions (4) are listed.
The solid lines represent o propagators while the
dotted lines designate Goldstone propagators. The

black blob represents the vertex which arises

from the counterterms with the number

representing the order of the counterterm.

dA
B, = kg » %)
_ x dm’
Vm‘mz dr

where the derivatives are taken at fixed bare values. Using the fact that the bare
quantities do not depend on the renormalization point x, we obtain the following
perturbative expansion for the renormalization group coefficients:

—B,= —a' A+ Q¢ —a/

) +2aa —2ca) A%, (6)

-b/ A+ () =b/ +bb  +ba’ —ca’)i*,

=
l

Z=1+cA+c A%+,
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64 = a1/12+ 02/13 4 oeee,

du’=pl(bA+bA%+ 1) .
In the above equations the prime designates the derivative with respect to logx. Within
the one-loop calculation, only coefficients @, and b, are needed. Therefore, we obtain the
one-loop coefficients immediately,

1 34 [, xU-n«" N-1
zﬁi:y’”=l6n2 [fodxm2+x(1—x)xz+ 9 ] )
Due to our first renormalization condition, the tree level relation v* = 3m’/ A remains
valid at all scales and to all orders of perturbation theory. Therefore, the renormalization
group coefficients for m’ and A are proportional to each other. Comparing with the
conventional mass-independent beta-function of the theory, the mass-dependent betafunction
exhibits different features as the scale x is changed. At very low energies, i.e.x’/m* < I,
the first term in the beta-function is negligible and the beta-function is given by (N— 1)A?
/(48m %), which originates from the Goldstone loop contributions only. This shows that, at
low energies, the renormalization effects are dominated by the Goldstones as expected.
When the energy scale is increased, the first term which originates from the o loop
becomes significant. At high enough energies, the beta-function saturates to (N+ 8) A/
(48 ?, which is the conventional result in a mass-independent renormalization scheme
which treats the o and the Goldstone particles equally. The low energy behavior can be
extracted easily from the renormalization group flow of the above equations. As kx/m goes
to zero, the running coupling constants A goes to zero logarithmically as (logk) ~'. The
correlation function I (pp) has the following asymptotic behavior,

w AV (N-Di) k2
r (ppa /1, m2, K)~ 3 1- 961‘[2 log?+ 0(,{2) + see ] (8)
Note that this agrees with the effective Lagrangian result for the Green’s function,
G °(pp)~logp + constant . )

Therefore, at this stage we obtain the same result as in the effective Lagrangian
approach™. However, there might be a potential problem. In the renormalization scheme
that is used here, one can show! that the oo-correlation function always scales as 4. To
one-loop level, the running coupling constant A vanishes logarithmically which is a direct
result from the evolution equation for 4 in Eq. 7. However, if we were to include higher
loop contributions in our calculation, the f-function will take the form:

B, =B A%+ B A+, (10)

where the second term stems from the two-loop contributions. As a result, the evolution
of the running coupling constant is modified to,

log logp
log’p
Therefore, the next to leading term in the oo-correlation function will generate a log logp
behavior. Within the context of the effective Lagrangian approach, however, the next to
leading contribution only comes in as p ’logp. It seems impossible to obtain a double
logarithm behavior in the effective Lagrangian approach. The only way to reconcile this,

A(p)~(logp) ™ + (11
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if one believes that both methods are valid, is that the coefficient B, has to vanish in the
infrared limit. In the following, we will show, by explicitly calculating the two-loop
beta-function in the infra-red limit, that this assertion is indeed true.

3 Two-loop renormalization group coefficients in the infra-red limit

In this section, the results of the two-loop RG coefficients in the infra-red limit will
be given. The details of the calculation will
Bubbles: —00'— "Q G._ be given elsewhere”™. There are quite a num-
ber of diagrams at two-loop order. However,
Snails: are _..\.7 it can be shown that, in the infra-red limit
only a few infra-red divergent diagrams contri-
Diamonds —tI'— ——0:>" 4'<:f—0— bute to the RG coefficients”™. These dia-
grams are listed in Fig.2. They fall into three

Fig.2. Two-loop diagrams that contribute to  categaories: bubbles, snails and diamonds.
the renormalization group coefficients in the Bubble diagrams are just products of
infra-red limit are listed. They fall into three  ,he |60p diagrams and can be obtained easily.
categories: bubbles, snails and diamonds. In the infra-red limit, they contribute to the

expansion coefficient a, in Eq. (6) as,
N-1
3

2 N-1,
(a)y= —a + I(x, m) I(x) - T Ii(x), (12)

where the one-loop integrals are defined to be,
d2wl AZs

2 —_— — —
I(m") = (271:)2“’ FERPE (13)
d2wl AZL‘
Le m = o™ Crm=—rwvm)
I (Kz) _ dZwl Ale
3

Q@ny Pl -k’
Using standard Feynman parametrization formula, one can write the snail diagrams as:

_ 2 2¢e
(a)g = —2N9 2(%) dej(lf+x(l o Lo B (A A SR I A (14)

where we have scaled out the mass. Note that we shifted / integral but left the second
factor untouched, since the change is only of the order x’/m* which is negligible in the
infra-red limit. Performing the /, integral, we get,

IN—2 (411: A2 )281’(28)

@)s = = 9 m? (4n)*

(15)

2 _ - 2¢
[oa-n-a-g (’Ex(l —x)%ﬁ—_f) ,

where we have replaced £(1 — &)™ '"° by (1 — &) '*° because the difference of the two
only contributes an infra-red finite result which gives a vanishing contribution to the RG
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coefficients in the infra-red limit. The integral can then be expressed in terms of the
spence function and has the following limiting form:

2 2

2N=-2( (1 4nA’ 1
@)s = Sam (;+21//(1)+210g ”Tnz )log%——z—logz(x(l—x)(l—y)%). (16)

Finally let us calculate the diamond diagrams. They are UV finite but may contain
infra-red divergences. Adding up the results from all the infra-red divergent diamonds, we
have,

2 2

N-1 2
(@), = TSy J log(x(l - —e’:—z) log(y(l - —2;) - 510g(x(1 -9 - 5)51—2) . an

Now let us summarize the above calculation by adding up the results from Eq. (12),
Eq. (16) and Eq. (17). We see clearly the derivatives of order A’ cancels out exactly and
we obtain the same result as in the one-loop result. Also the oo correlation function adds
up to a geometric series,

T 16m?

2 2
vor 2 AU N—-1 4 k> [(N-1 A , K
S [ QLS TS S E\Smi ) | O (PR
Py =5 {1-"% Tgnz 182 6 t6n2 ) %8 47

The Greens function coincides with the result in the effective Lagrangian approach. This
means that higher loops do not generate new infra-red divergences into the theory. The
only infra-red divergence stems from the one-loop order and chiral symmetry guarantees
that all the infra-red divergences cancel out in higher loops.

32 -
%ﬂ;—(%), (1)

4 Conclusion

In this letter, the renormalization group properties of the O(N) model in the broken
phase is studied within the framework of field theory using perturbation theory. A
mass-dependent renormalization scheme is wused to handle the potential infra-red
divergences in the theory in 4 dimensions. The corresponding renormalization group
coefficients are obtained to oneloop at all scales and to two-loop in the infra-red limit. It
is seen, by explicit perturbative calculation, that the two-loop renormalization group
coefficients coincide with the one-loop result in the infra-red limit. As a result, the oo
Green’s function agrees with the expected result obtained within the effective Lagrangian
approach. The result also suggests, that the potential infra-red divergences in the theory is
in fact only a one-loop effect.
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