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Collective Motion of a pure Octupole
Deformed System *
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Abstract The collective motion of a pure octupole deformed system is treated as the vibrations in
body-fixed frame and rotation of this system about the axes of lab-system, as well as the coupling be-
tween vibrations and rotation. The quantized operator of kinetic energy is derived and the collective
spectra built on some special equilibrium shapes are discussed.
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1 Introduction

[t's well known that the quadruple deformation is by far the most important deforma
tion in the nuclear physics and the collective motion of quadruple deformed nuclei was treated
as the vibrations in body-fixed frame([, and ¥, vibrations) and rotation of this system about
the axes of lab-frame'"’ . However, the higher multipole deformation is also essential for a sat-
isfactory description of nuclear properties. There are attempts of generalization of the Bohr's
collective Hamiltonian to pure octupole deformed system” . But because of the misleading
definition of the body-fixed frame this problem has not been solved. In recent years, the col-
lective spectra of pure octupole deformed system have been paid attention. The collective
bands of octupole deformation have become one of the most heating frontier topic (Refs. [ 5,
6] for example) . People have already discussed the parameterization of octupole deformation
and some body-fixed frames of octupole deformation. In Ref. [7], 18 various body-fixed
frames are defined, two of them are found to hold the simplest determinant and thought to be
the most convenient. In the following, we will derive the quantized operator of kinetic energy
in the body-fixed frame defined by deformation parameters as, a3 ;a3 503 -

2 Quantization of the Collective Kinetic Energy

There is no unique way to perform this quantization but, as in the quadruple case, the Pauli pre-
scription can be used. This recipe is designed to give the right answer when the generalized variables
are transformed to Cartesian coordinates. Given a classical Hamiltonian written in terms of variables
ax,as,azn,by ., ,9;,9;,referred to as ¢; ,and their time derivatives, with a kinetic energy giv-
en in Ref. [7]. The Pauli prescription replaces the kinetic energy by the operator.
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With the definition

we can write down
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(10)
From above quantized operator of kinetic energy we see that the collective motion of a pure oc-
tupole deformed system can be in general treated as vibrations( a3y, a3, , a3 and b3, vibrations) in
body-fixed frame, and rotation of whole system about the axes of lab-system, as well as the coupling
between vibrations and rotation. However, the quantized operator of kinetic energy is very compli-
cated. In fact,in all body-fixed frames defined in Ref. [7], the quantized operators of kinetic energy
are all very complicated, which shows that the collective motion in system with general octupole de-
formation is very complicated. However, for some special octupole deformation, the coupling between
vibrations and rotation disappears, the collective motion of octupole deformed system is simple, and
we will discuss them in the following paragraph.

3 Collective Spectra Built on Some Special Equilibrium Shapes

To an octupole deformed system with only ay, and a3, deformations, the collective kinetic ener-
gy is then reduced to the form

T; = 531(030+032)+7Bz Wl

where
F1 = 6a% +4a% + 2V 15aya,,
J2 = 6ad +4ady -2V 15ayaz5, (1
F3 = 4“%2-
With the further substitution a3 = Beos¥, a3, = BsinY, the kinetic energy can be represented as
Ty = 5By (B + B7) + 5By Suld,,
where '
S =283 - sin*y + v/ 15sinycosy),
Jo = 28%(3 - sin’y — v 15sinycosy),
Sy = 4f%siny.

The corresponding matrix of metric is
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43
and the determinant of matrix of metric can be calculated as
g = detG = 24, 4,4, = 168(9 — 21sin’ ¥ + 16sin* ¥)sin® 7. (16)

The Pauli prescription replaces the kinetic energy by the operator
T3 = T\'ib + Tmt’

1 3,3 1 a . - —_ J
k(L __._..--f——sm)’\/9—215mz}’+lésm)’—),
T 2B, (ﬂ‘ aﬂgq 9B Bsiny v 9 — 21sin? y + 16sin* y Iy Iy
2 2 2 2
Tmt = h ( ; gl + N £2 + ‘,32 )9
2B;8°\1 + 8sin*(y + @)  1+8sin°(y —a) 4sin’y

here a = 1g”! ,,/% = 52°. When the deformation potential energy is involved in Eq. (17), the

quantized Hamiltonian built on above special octupole deformations is derived out, which is similar to
the Bohr Hamiltonian built on quadruple deformation. When the freedoms of vibration are frozen, the
rotational spectra are shown in Fig. 1. From Fig. 1 one sees that when 7 goes to zero, the lowest lev-
els of even angular momentum of rotational states approach constant, while the rest levels of rotation-
al states goes to infinity. It means that rotational motion about symmetry axis of a system with odd
angular momentum is forbidden in quantum mechanics. When ¥ =90° — a , the rotational levels ap-
pear valley in the states 2,.3,45,5,,64 and so on , which show these states are relatively stable and
the octupole deformed nuclei exist the metastable states in the case of ¥ =90° — a. In fact, the shape
of this system with ¥ =90° — a deformation possesses D3, symmetry. With the ¥ increasing, these
rotational levels go up. When ¥ = a, these rotational levels go to top and appear peak,which shows
the deformation, with ¥ = « is unstable. When ¥ =90°, a3y goes to naught and the nuclear surface
possesses only a3, deformation, the shape of this system possesses T, symmetry. The rotational
Hamiltonian is then reduced to a spherical top,so the rotational levels with same angular momentum
are degenerate. These degenerate levels are also lower, which shows that a4, is a more important oc-

tupole deformation.

4 Conclusions

The collective motion of a pure octupole de-
formed system has been treated as vibrations (asy,

a3 ,as and b, vibrations) in body-fixed frame and
rotation of whole system about the axes of lab-sys-

tem,as well as the coupling between vibrations and
rotation. The quantized operator of kinetic energy is
derived out. The collective spectra built on some spe-
cial equilibrium shape are obtained with a lot of the in-

Fig. 1. The rotational spectra built on the special
shape with only a3 and a3, deformations.
teresting properties.
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