Possible Implications of Small or Large CP Violation in B_d^0 vs $\overline{B}_d^0 \rightarrow J/\psi K_S$ Decays

XING Zhi-Zhong1)

(Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100039, China)

Abstract We argue that a small or large CP-violating asymmetry $\mathscr{B}_{\phi K_S}$ in B_d^0 vs $\bar{B}_d^0 \rightarrow J/\psi K_S$ decays, which seems to be favored by the recent BaBar or Belle data, might hint at the existence of new physics in $B_d^0 - \bar{B}_d^0$ mixing. We present a model-independent framework to show how new physics modifies the standard-model CP-violating asymmetry. $\mathscr{E}_{\phi K_S}^{\text{MM}}$. We particularly emphasize that an experimental confirmation of $\mathscr{M}_{\phi K_S} \simeq \mathscr{E}_{\phi K_S}^{\text{MM}}$ must not imply the absence of new physics in $B_d^0 - \bar{B}_d^0$ mixing.

Key words B-meson dacay, CP violation new physics, $B_d^0 - \overline{B}_d^0$ mixing

Recently the BaBar and Belle Collaborations have reported their new measurements of the CP-violating asymmetry in B_d^0 vs $\bar{B}_d^0 \rightarrow J/\psi K_S$ decays:

$$\mathcal{A}_{\phi K_{s}} = \begin{cases} 0.59 \pm 0.14(\text{stat}) \pm 0.05(\text{syst}) & (\text{BaBar}^{[1]}) \\ 0.99 \pm 0.14(\text{stat}) \pm 0.06(\text{syst}) & (\text{Belle}^{[2]}) \end{cases}, \tag{1}$$

The central values of these two measurements are apparently different from that of the previous CDF measurement, $\mathcal{H}_{\psi K_S} = 0.79 \pm 0.42^{[3]}$; and they are also different from the result obtained from global analyses of the Cabibbo-Kobayashi-Maskawa(CKM)unitarity triangle in the standard model, $\mathcal{H}_{\psi K_S}^{M} = 0.75 \pm 0.06^{[4]}$. In view of the error bars associated with the BaBar and Belle measurements, it remains too early to claim any serious discrepancy between the experimental result and the standard-model prediction. Nevertheless, one cannot rule out the possibility of $\mathcal{H}_{\psi K_S} < \mathcal{H}_{\psi K_S}^{M}$ or $\mathcal{H}_{\psi K_S} > \mathcal{H}_{\psi K_S}^{M}$. A small or large CP-violating asymmetry in $B_d \rightarrow J/\psi K_S$ decays should be a clean signal of new physics beyond the standard model.

The purpose of this paper is two-fold. First, we present a model-independent framework to show how new physics in $B_d^0 - \bar{B}_d^0$ mixing may modify the standard-model quantity $\mathscr{B}_{\psi K_S}^{\text{M}}$. We find that the possible deviation of $\mathscr{B}_{\psi K_S}^{\text{M}}$ from $\mathscr{B}_{\psi K_S}^{\text{M}}$ can fully be described in terms of three independent parameters, including the magnitude and phase of the new-physics contribution to $B_d^0 - \bar{B}_d^0$ mixing. Second, we point out that the equality $\mathscr{B}_{\psi K_S} = \mathscr{B}_{\psi K_S}^{\text{M}}$ itself must not mean the absence of new physics in $B_d^0 - \bar{B}_d^0$ mixing, in which the value of $\mathscr{B}_{\psi K_S}$ coincides with that of $\mathscr{B}_{\psi K_S}^{\text{M}}$. Hence measuring the CP-violating asymmetry $\mathscr{B}_{\psi K_S}$ alone is neither enough to test the standard model nor enough to constrain the possible new physics in $B_d^0 - \bar{B}_d^0$ mixing.

It is well known that the CP asymmetry $\mathcal{A}_{\psi K_S}$ arises from the interplay of the direct decays of B^0_d and \overline{B}^0_d mesons, the B^0_d - \overline{B}^0_d mixing in the initial state, and the K^0 - \overline{K}^0 mixing in the final state [5]:

$$\mathcal{B}_{\phi K_{S}} = -\operatorname{Im}\left(\frac{q}{p} \cdot \frac{V_{cb} V_{cs}^{*}}{V_{cb}^{*} V_{cs}} \cdot \frac{q_{K}^{*}}{p_{K}^{*}}\right), \tag{2}$$

where $V_{\rm cb}$ and $V_{\rm cs}$ are the CKM matrix elements, p and q are the ${\rm B_d^0}{\rm -}\bar{\rm B}_{\rm d}^0$ mixing parameters, $p_{\rm K}$ and $q_{\rm K}$ are the ${\rm K^0}{\rm -}\bar{\rm K^0}$ mixing parameters, and the minus sign on the right-hand side of Eq. (2) comes from the CP-odd eigenstate ${\rm J/\psi K_S}$. In this expression the tiny penguin contributions to the direct transition amplitudes, which may slightly modify the ratio $(V_{\rm cb}\,V_{\rm es}^*)/(V_{\rm cb}^*\,V_{\rm cs})^{[6]}$, have been neglected. Within the standard model, $q_{\rm K}/p_{\rm K}\approx 1$, $q/p\approx V_{\rm td}/V_{\rm td}^*$ and $(V_{\rm cb}\,V_{\rm es}^*)/(V_{\rm cb}^*\,V_{\rm cs})\approx 1$ are excellent approximations in the standard parametrization of the CKM matrix^[7]. Therefore one obtains $\mathscr{K}_{\rm VK_S}^{\rm SM}\approx -{\rm Im}(V_{\rm td}/V_{\rm td}^*)\approx \sin 2\beta$, where $\beta\equiv {\rm arg}\left[-(V_{\rm cb}^*\,V_{\rm cd})/(V_{\rm tb}^*\,V_{\rm td})\right]\approx {\rm arg}(-V_{\rm td}^*)$ is one of the three inner angles of the CKM unitarity triangle^[7]. A recent global analysis of the quark flavor mixing data and the CP-violating observables in the kaon system yields $\sin 2\beta = 0.75\pm 0.06^{[4]}$.

If the measured value of $\mathcal{M}_{\psi K_s}$ deviates significantly from the standard-model prediction $\mathcal{M}_{\psi K_s}$, it is most likely that the B^0_d - B^0_d mixing phase q/p consists of unknown new physics contributions. Of course there may also exist new physics in K^0 - \bar{K}^0 mixing, contributing a non-trivial complex phase to $\mathcal{M}_{\psi K_s}$ through q_K/p_K . It is quite unlikely that the tree-level W-mediated decays of B^0_d and \bar{B}^0_d mesons are contaminated by any kind of new physics in a significant way^[8]

To be specific, we assume that a possible discrepancy between $\mathcal{A}_{\psi K_s}$ and $\mathcal{A}_{\psi K_s}^{SM}$ mainly results from new physics in $B_d^0 - \bar{B}_d^0$ mixing. We therefore write down the ratio q/p in terms of the off-diagonal elements of the 2×2 $B_d^0 - \bar{B}_d^0$ mixing Hamiltonian:

$$\frac{q}{p} = \sqrt{\frac{M_{12}^* - i\Gamma_{12}^{*}/2}{M_{12} - i\Gamma_{12}/2}} \text{ with } M_{12} = M_{12}^{SM} + M_{12}^{NP}$$
(3)

and $\Gamma_{12} = \Gamma_{12}^{\rm SM}$. Note that $|M_{12}| \gg |\Gamma_{12}|$ is expected to hold both within and beyond the standard model, thus we have $q/p \approx \sqrt{M_{12}^*/M_{12}}$ as a good approximation. The relative magnitude and the phase difference between the new-physics contribution $M_{12}^{\rm NP}$ and the standard-model contribution $M_{12}^{\rm SM}$ are in general unknown. By definition, we may take $|M_{12}| = \Delta M/2$, where $\Delta M = (0.487 \pm 0.014)$ ps⁻¹ is the experimentally measured mass difference between two mass eigenstates of B_d mesons^[7]. Then we parametrize $M_{12}^{\rm SM}$, $M_{12}^{\rm NP}$ and M_{12} in the following way:

$$M_{12}^{SM} = R_{SM} e^{i2\beta} \frac{\Delta M}{2}, M_{12}^{NP} = R_{NP} e^{i2\theta} \frac{\Delta M}{2}, M_{12} = e^{i2\phi} \frac{\Delta M}{2},$$
 (4)

where $R_{\rm SM}$ and $R_{\rm NP}$ are real and positive parameters, θ represents the new-physics phase, and ϕ denotes the effective (overall) phase of $B_d^0 - \bar{B}_d^0$ mixing. Solving Eqs. (3) and (4), we obtain

$$R_{\rm NP} = -R_{\rm SM}\cos 2(\theta - \beta) \pm \sqrt{1 - R_{\rm SM}^2 \sin^2 2(\theta - \beta)}$$
 (5)

There exist two possible solutions for $R_{\rm NP}$, corresponding to (\pm) signs on the right-hand side of Eq. (5). Numerically, $R_{\rm SM} > 0$ and $R_{\rm NP} \ge 0$ must hold for either solution.

Although $R_{\rm SM}$ can be calculated in the box-diagram approximation, its value may involve quite large uncertainties arising from the hadronic matrix element $\langle B_{\rm d}^0 \mid \bar{b}\gamma_\mu \, (1-\gamma_5) \, d \mid \bar{B}_{\rm d}^0 \rangle$. Nevertheless, $R_{\rm SM}$ is in general expected to be close to unity, no matter what kind of new physics is hidden in $B_{\rm d}^0 - \bar{B}_{\rm d}^0$ mixing⁽⁹⁾. Note that $R_{\rm SM}=1$ must not lead to $R_{\rm NP}=0$. There is another solution, $R_{\rm NP}=-2\cos 2(\theta-\beta)$ with $\cos 2(\theta-\beta) \le 0$, corresponding to $R_{\rm SM}=1$. On the contrary, $R_{\rm NP}=0$ must

result in $R_{SM} = 1$, as indicated by Eq. (5).

With the help of Eqs. (3) and (4), we recalculate the CP-violating asymmetry \mathcal{A}_{M_S} and arrive at the following result:

$$\mathcal{A}_{\text{MK}} = \sin(2\phi) = R_{\text{SM}}\sin(2\beta) + R_{\text{NP}}\sin(2\theta) . \tag{6}$$

Note that $R_{\rm NP}$, $R_{\rm SM}$, β , and θ are dependent upon one another through Eq.(5). Of course, $|\mathscr{M}_{\psi K_s}| \le 1$ holds within the allowed parameter space of $R_{\rm NP}$ and θ . The ratio of $\mathscr{M}_{\psi K_s}$ to $\mathscr{M}_{\psi K_s}^{\rm SM}$ is given as

$$\xi_{\psi K_{s}} \equiv \frac{\mathscr{H}_{\psi K_{s}}}{\mathscr{L}_{\psi K_{s}}^{M}} \approx \frac{\sin(2\phi)}{\sin(2\beta)} = R_{SM} + R_{NP} \frac{\sin(2\theta)}{\sin(2\beta)}. \tag{7}$$

In the literature (e.g., Ref. [4]), the value of $\mathscr{L}_{\psi K_q}^{M} \approx \sin 2\beta$ is obtained from a global analysis of the experimental data on $|V_{ub}/V_{cb}|$, $B_d^0 - \bar{B}_d^0$ mixing, $B_s^0 - \bar{B}_s^0$ mixing, and CP violation in $K^0 - \bar{K}^0$ mixing. The key assumption in such analyses is that there is no new-physics contribution to the K^0 - \bar{K}^0 , B^0_d - \bar{B}^0_d , and \bar{B}^0_s , \bar{B}^0_s mixing systems. If new physics does contribute significantly to the heavy meson-antimeson mixing instead of the light one, one has to discard the direct experimental data on Bd-Bd mixing and $B_s^0 - \bar{B}_s^0$ mixing in analyzing the CKM unitarity triangle. In this case, the resultant constraint on $\sin 2\beta$ becomes somehow looser. One may observe, from the figures of the CKM unitarity triangle in Refs. [4,7], that $0.6 \le \sin 2\beta \le 0.8$ is a quite generous range constrained by current data on $|V_{ub}/V_{eb}|$ and CP violation in $K^0-\overline{K}^0$ mixing. Given such a generously allowed region for $\mathscr{H}_{\psi K_g}^{SM}$, we conclude that $\xi_{\psi K_g} > 0$ is definitely assured. Using $\mathscr{H}_{\psi K_g}^{SM} = 0.75 \pm 0.06^{(4)}$ for illustration, we obtain $\xi_{\psi K_g} = 0.79 \pm 0.26 (BaBar)$ or $1.32 \pm 0.30 (Belle)$. We see that the BaBar measurement seems to indicate $\xi_{\psi K_x} < 1$, while the Belle measurement seems to imply $\xi_{\psi K_x} > 1$. If either possibility could finally be confirmed with more precise experimental data from B-meson factories, it would be a very clean signal of new physics [10]. If the further data of both BaBar and Belle Collaborations turn to coincide with each other and lead to $\xi_{\psi K_c} \approx 1$, however, one cannot draw the conclusion that there is no new physics in $B_d^0 - \overline{B}_d^0$ mixing.

Now let us show why $\mathcal{A}_{\psi K_S} = \mathcal{A}_{\psi K_S}^{SM}$ must not imply the absence of new physics in $B_d^0 - \bar{B}_d^0$ mixing. Taking $\xi_{\psi K_S} = 1$ and using Eq. (5), we obtain the following equation constraining the allowed values of A.

$$(1 + R_{SM}) \tan^2 2\theta - 2R_{SM} \tan 2\beta \tan 2\theta - (1 - R_{SM}) \tan^2 2\beta = 0.$$
 (8)

Then it is straightforward to find out two solutions for tan 2θ :

$$\tan 2\theta = \tan 2\beta$$
 and $\tan 2\theta = \tan 2\beta \frac{R_{SM} - 1}{R_{SM} + 1}$. (9)

Note that the first solution corresponds to $R_{\rm SM}+R_{\rm NP}=1$. The second solution implies that $\tan 2\theta + \cos 2\beta$ may hold, if $R_{\rm SM}$ is remarkably close to 1. Although the afore-obtained region of θ is quite specific, it does exist and give rise to $\xi_{\psi K_g}=1$. Therefore, an experimental confirmation of $\xi_{\psi K_g}=1$ cannot fully rule out the possibility of new physics hidden in $B_d^0-\bar{B}_d^0$ mixing.

Theoretically, the information on R_{NP} and θ can only be obtained from specific models of new physics (e.g., the supersymmetric extensions of the standard model^[10]). An interesting possibility is that the new-physics contribution conserves $CP(i.e., \theta=0)$ and all observed CP-violating phenomena in weak interactions are attributed to the non-trivial phase in the CKM matrix. In this scenario, we obtain $\mathcal{B}_{\psi K_{\zeta}} = \sin(2\phi) = R_{SM} \sin(2\beta)$. Obviously $\mathcal{B}_{\psi K_{\zeta}} / \mathcal{B}_{\psi K_{\zeta}}^{SM} = R_{SM} \leq 1$ is required, in order to

understand the present BaBar measurements.

It becomes clear that the measurement of $\mathscr{B}_{\psi K_s}$ itself is not enough to test the self-consistency of the standard model or to pin down possible new physics hidden in $B_d^0 - \bar{B}_d^0$ mixing. For either purpose one needs to study the CP-violating asymmetries in some other nonleptonic B-meson decays, although most of them are not so clean as B_d^0 vs $\bar{B}_d^0 \rightarrow J/\psi K_s$ decays in establishing the relations between the CP-violating observables and the fundamental CP-violating parameters.

In summary, we have discussed possible implications of a small or large CP-violating asymmetry in B_d^0 vs $\bar{B}_d^0 \rightarrow J/\psi K_S$ decays. While such an effect could be attributed to new physics in $K^0 - \bar{K}^0$ mixing, it is most likely to result from new physics in $B_d^0 - \bar{B}_d^0$ mixing. Model-independently, we have formulated the basic features of new-physics effects on CP violation in $B_d \rightarrow J/\psi K_S$. We have also pointed out that an experimental confirmation of $\mathscr{B}_{\psi K_S} \approx \mathscr{B}_{\psi K_S}^M$ must not imply the absence of new physics in $B_d^0 - \bar{B}_d^0$ mixing. An extensive study of all hadronic B-meson decays and CP asymmetries is desirable, in order to test the standard model and probe possible new physics at some higher energy scales.

The author would like to thank L. Wolfenstein for a lot of useful discussions.

References

- BaBar Collaboration, B. Aubert et al. hep-ph/0107013
- 2 Belle Collaboration, A. Abashian et al. hep-ph/0107061
- 3 CDF Collaboration, T. Affolder et al. Phys. Rev., 2000, D61:072005
- 4 Caravaglios F et al. hep-ph/0002171
- 5 DU D, Dunietz I, WU D D. Phys. Rev., 1986, D34:3414
- 6 DU D, XING Z Z. Phys. Lett., 1993, B312; 199; 1995, B353; 313
- 7 Particle Data Group, Groom D E et al. Eur. Phys. J., 2000, C15:1
- 8 See, e.g., Nir Y. SLAC-PUB-5874, 1992
- 9 Sanda A I, XING Z Z. Phys. Rev., 1997, D56:6866; XING Z Z. Eur. Phys. J., 1998, C4:283
- 10 Kagan A L, Neubert M. Phys. Lett., 2000, B492;115; Silva J P, Wolfenstein L. Phys. Rev., 2001, D63:056001; Eyal G, Nir Y, Perez G. JHEP, 2000, 0008:028; Buras A J, Buras R. Phys. Lett., 2001, B501:223; Masiero A, Piai M, Vives O. Phys. Rev., 2001, D64:055008; Fritzsch H, XING Z Z. Phys. Lett., 2001, B506:109; Fleischer R, Mannel T. Phys. Lett., 2001, B506:311

弱衰变 $B_a \rightarrow J/\psi K_s$ 中的 CP 破坏与新物理

邢志忠1)

(中国科学院高能物理研究所 北京 100039)

摘要 最近 BaBar 与 Belle 国际合作组对弱衰变 $B_a \rightarrow J/\psi K_s$ 中的 CP 破坏测量结果似乎暗示有新物理存在于 B_a^0 - B_a^0 混合. 为此给出一个模型无关的分析,以说明新物理对标准模型结果的可能修正. 特别强调,即使实验证明 $B_a \rightarrow J/\psi K_s$ 中的 CP 破坏效应与标准模型的预言相符,仍然有可能存在新物理.

关键词 B衰变 CP破坏 新物理 Bo-Bo 混合

^{2001 - 10 - 18} 收稿

 $^{1)\,}E\text{-mail}\,; xingzz\, \textit{@}\,\, mail\,.\, ihep\,.\, ac\,.\, cn$