两重子体系夸克效应的分析*

张宗烨 余友文

(中国科学院高能物理研究所 北京 100039)

摘要 通过对两重子集团间夸克交换项的分析指出,两重子系统的夸克效应是 两集团靠得很近时,并在相对运动的低次波(S波)中才能充分表现出来.对给 定的两重子态其夸克效应的性质由自旋、味道和色空间置换算符在该态的矩阵 元决定.有些自旋-味道状态,Pauli 堵塞效应很严重,必然存在着很强的排斥 心;另一些自旋-味道状态,夸克交换效应有助于把两个重子"融合"到一起,从 而形成双重子态.因此,两重子系统的结合能和散射相移的数据是检验它们之 间夸克效应的重要场所.

关键词 夸克效应 夸克模型 双重子态

1 引言

近几十年的研究表明介子在原子核现象中起着重要的作用,建立在以强子自由度为 基础的量子强子动力学(QHD)是一个非常成功的理论,解释了大量的核物理实验现象. 另一方面据当今的共识,强相互作用的基本理论是以夸克与胶子自由度及其规范场论为 基础的量子色动力学(QCD).核子等强子是由夸克、胶子组成的,夸克间通过胶子发生相 互作用.这就向我们提出了两个很重要的问题;第一,对原子核这样一个强作用多体系 统,为什么在冻结夸克、胶子自由度的QHD理论能如此成功地符合大量的实验现象,如何 从 QCD 理论出发来认识QHD并建立起两者之间的关系.第二,在常温常密的核物理现象 中是否有夸克胶子自由度的表现,也就是说是否有QHD 理论解释不了而要从夸克和胶子 自由度出发才能得到解释的现象,若有的话会在哪些现象中表现出来.这篇文章的目的 就是试图从夸克交换效应的分析中对上述问题做出一些讨论.

我们知道,两体核子 - 核子相互作用是核物理中最基本的问题之一,广泛的核物理现 象都是在给定核子 - 核子相互作用并合适的选取了处理多体问题方法的框架下得到解释 的. 若有重要的夸克自由度表现的话那么首先应在两体重子 - 重子相互作用中有所表 现. 因此首先研究两重子系统的夸克效应出发来探讨核内的夸克效应.

2001-11-27 收稿

* 国家自然科学基金(10047002)资助

712-720

2 两重子系统中夸克效应的分析

在重子层次的描述中重子是点粒子,对于两重子 A 和 B 系统总轨道角动量为 L、自旋 为 S、同位旋为 T 的反对称化的波函数可表示为

$$\Psi_{AB}^{LST}(1,2) = \frac{1}{\sqrt{2}} (\Phi_{A}(1)\Phi_{B}(2) - \Phi_{A}(2)\Phi_{B}(1))_{LST},$$

从夸克层次看 A 和 B 都是由 3 个夸克组成的集团. 设每个三夸克在一位心中运动,且集团内部夸克的波函数已反对称化,则两个三夸克集团位心间距为 S_i 时的基态波函数可表示为

$$\phi_{AB}^{LST}(S_i) = \int \left(\Phi_A \left(1, 2, 3; -\frac{S_i}{2} \right) \Phi_B \left(4, 5, 6; \frac{S_i}{2} \right) \right)_{ST} Y_{LM}^*(\hat{S}_i) d\hat{S}_i, \qquad (2)$$

通常称 *S_i* 为生成坐标,对于给定两个集团位心距离 *S_i* 时,两重子夸克间全反对称化的波函数可表示为

$$\Psi_{AB}^{LST}(S_i) = \int A \left[\Phi_A \left(1, 2, 3; -\frac{S_i}{2} \right) \Phi_B \left(4, 5, 6; \frac{S_i}{2} \right) \right]_{ST} Y_{LM}^*(\hat{S}_i) d\hat{S}_i,$$
(3)

这儿 A 是夸克间全反对称化的算符.由于集团内部的夸克已反对称化,因此 A 可表示为 两类交换算符的乘积,即

$$\Psi_{AB}^{LST}(S_{i}) = \int (1 - P_{AB}) \left(1 - \sum_{\substack{k \in A \\ l \in B}} \left(\Phi_{A} \left(1, 2, 3; -\frac{S_{i}}{2} \right) \Phi_{B} \left(4, 5, 6; \frac{S_{i}}{2} \right) \right)_{ST} Y_{LM}^{*}(\hat{S}_{i}) d\hat{S}_{i},$$
(4)

其中 P_{AB} 为 A, B 集团坐标的置换算符, $(1 - P_{AB})$ 就是重子层次描述中如方程(1)表示的两 重子间的反对称化. $(1 - \sum_{k \in A \ l \in B} P_{kl})$ 则表示两集团间夸克的反对称化算符, 算符 P_{kl} 是对夸 克各部分的空间都要置换的,

$$P_{kl} = P_{kl}^r P_{kl}^\sigma P_{kl}^f P_{kl}^c , \qquad (5)$$

 r,σ,f,c 分别表示空间坐标,自旋,味和色空间的标号.这是夸克层次中描述泡利原理的作用的.显然这一部分的大小反映了集团间夸克交换效应的重要性.为了观察夸克交换效应的大小,通过计算两个固定集团间夸克交换算符 $\left(1 - \sum_{k \in A \ l \in B} P_{kl}\right)$ 的矩阵元来分析两集

团间夸克交换效应的重要性.

$$\iint \langle \Phi_{A} \left(1, 2, 3; -\frac{S_{i}}{2} \right) \Phi_{A} \left(4, 5, 6; \frac{S_{i}}{2} \right); ST \left| 1 - \sum_{\substack{k \in A \\ l \in B}} P_{kl} \right| \cdot \\ \Phi_{A} \left(1, 2, 3; -\frac{S_{j}}{2} \right) \Phi_{A} \left(4, 5, 6; \frac{S_{j}}{2} \right); ST \rangle Y_{LM}^{*}(\hat{S}_{i}) Y_{LM}(\hat{S}_{j}) d\hat{S}_{i} d\hat{S}_{j} = \\ \iint \langle \Phi_{A} \left(1, 2, 3; -\frac{S_{i}}{2} \right) \Phi_{B} \left(4, 5, 6; \frac{S_{i}}{2} \right); ST \rangle Y_{LM}^{*}(\hat{S}_{i}) Y_{LM}(\hat{S}_{j}) d\hat{S}_{i} d\hat{S}_{j} .$$

$$\Phi_{A} \left(1, 2, 3; -\frac{S_{j}}{2} \right) \Phi_{B} \left(4, 5, 6; \frac{S_{j}}{2} \right); ST \rangle Y_{LM}^{*}(\hat{S}_{i}) Y_{LM}(\hat{S}_{j}) d\hat{S}_{i} d\hat{S}_{j} .$$

$$(6)$$

设味 SU(3)对称, S; 和 S, 代表集团位心坐标,单个夸克的径向波函数取相对于位心谐振 子基能量最低态. 这时两集团的径向波函数可写为

$$\psi_{\Lambda}\left(r_{1}, r_{2}, r_{3}; -\frac{S_{i}}{2}\right) = \prod_{j=1}^{3} \left(\frac{1}{\pi b^{2}}\right)^{3/4} \exp\left[-\frac{1}{2b^{2}}\left(r_{j} - \frac{S_{i}}{2}\right)^{2}\right], \quad (7)$$

$$\psi_{\rm B}\left(r_4, r_5, r_6; \frac{S_i}{2}\right) = \prod_{j=4}^{6} \left(\frac{1}{\pi b^2}\right)^{3/4} \exp\left[-\frac{1}{2b^2}\left(r_j + \frac{S_i}{2}\right)^2\right], \tag{8}$$

这里 b 是集团内夸克分布的半径参数.为了计算方便,先不考虑空间的分波,这时波函数 规一化矩阵元的表达式为

$$\langle \Phi_{S_{A}}^{A} r_{A} \left(1, 2, 3; -\frac{S_{i}}{2} \right) \Phi_{S_{B}}^{A} r_{B} \left(4, 5, 6; \frac{S_{i}}{2} \right); ST$$

$$|1 - 9P_{36}| \Phi_{S_{A}}^{A} r_{A} \left(1, 2, 3; -\frac{S_{i}}{2} \right) \Phi_{S_{B}}^{A} r_{B} \left(4, 5, 6; \frac{S_{i}}{2} \right); ST \rangle =$$

$$1 - 9\exp\left(-\frac{S_{i}^{2}}{2b^{2}} \right) \langle \chi(123)_{S_{A}} r_{A} \chi(456)_{S_{B}} r_{B}; ST | P_{36}^{ofc} | \chi(123)_{S_{A}} r_{A} \chi(456)_{S_{B}} r_{B}; ST \rangle, \quad (9)$$

上式右边第二项由集团间夸克交换效应引起.从上式可看到集团间夸克交换效应的大小和特性主要是由两个因素决定的,一个是算符 P% 矩阵元的性质,另一个是径向积分因子

 S_i 是两个集团位心间的距离,可近似看作两个集团的相对距离. 显然当两

集团相对距离较大时,由于径向积分因子很小,不论 P_{36}^{ff} 的矩阵元有多大,集团间的夸克 交换效应也是很小的.所以主要讨论两个集团靠近的情况,这时 P_{36}^{ff} 的矩阵元特点就起 了重要的作用.在 S_i 很小,即两个集团靠近的近似下,对 L = 0 及 L = 1的分波情况,(6) 式的对角顶($S_i = S_i$)可以分别表示为

$$\langle \Phi_{S_{A}T_{A}}^{A} \left(1, 2, 3; -\frac{S_{i}}{2} \right) \Phi_{S_{B}T_{B}}^{B} \left(4, 5, 6; \frac{S_{i}}{2} \right); ST$$

$$|1 - 9P_{36}| \Phi_{S_{A}T_{A}}^{A} \left(1, 2, 3; -\frac{S_{i}}{2} \right) \Phi_{S_{B}T_{B}}^{B} \left(4, 5, 6; \frac{S_{i}}{2} \right); ST \rangle_{L=0} \approx$$

$$1 - 9 \langle \chi_{S_{A}T_{A}} (123) \chi_{S_{B}T_{B}} (456); ST | P_{36}^{2fc}| \chi_{S_{A}T_{A}} (123) \chi_{S_{B}T_{B}} (456); ST \rangle, \qquad (10)$$

$$\langle \Phi_{S_{A}T_{A}}^{A} \left(1, 2, 3; -\frac{S_{i}}{2} \right) \Phi_{S_{B}T_{B}}^{B} \left(4, 5, 6; \frac{S_{i}}{2} \right); ST$$

$$|1 - 9P_{36}| \Phi_{S_{A}T_{A}}^{A} \left(1, 2, 3; -\frac{S_{i}}{2} \right) \Phi_{S_{B}T_{B}}^{B} \left(4, 5, 6; \frac{S_{i}}{2} \right); ST$$

$$|1 - 9P_{36}| \Phi_{S_{A}T_{A}}^{A} \left(1, 2, 3; -\frac{S_{i}}{2} \right) \Phi_{S_{B}T_{B}}^{B} \left(4, 5, 6; \frac{S_{i}}{2} \right); ST \rangle_{L=1} \approx$$

$$1 - 3 \langle \chi_{S_{A}T_{A}} (123) \chi_{S_{B}T_{B}} (456); ST | P_{36}^{2fc}| \chi_{S_{A}T_{A}} (123) \chi_{S_{B}T_{B}} (456); ST \rangle. \qquad (11)$$

下面分别讨论 S_i 很小时, L=0 和 L=1 情况的夸克交换效应:

由重子八重态和十重态的基态重子可以组成几百个可能的两重子系统(AB)_{Lst}. L 为偶数对应于两集团轨道空间相对运动波函数是对称的,因此其自旋和味部分波函数是 反对称的,以符号($\chi_{A}\chi_{B}$)_{st}来标志. L 为奇数对应于轨道空间相对运动是反对称的态,相 应的自旋味波函数是对称的,以($\chi_{A}\chi_{B}$)_{st}表示. 所以态的 $\langle P_{36}^{ofc} \rangle$ 值都是分别在($\chi_{A}\chi_{B}$)_{st} 及($\chi_{A}\chi_{B}$)_{st}上计算的. L=0及 L=1情况的部分数值列在表 1 和表 2 中.

(P ^{ofe})	(1 - 9P ^{ofe} ₃₆)	(AB) _{S7}			
$-\frac{1}{9}$	2	$(\Delta\Delta)_{03}, (\Delta\Delta)_{30}, (\Delta\Sigma^*)_{0\frac{5}{2}}, (\Delta\Sigma^*)_{3\frac{1}{2}}, (\Xi^*\Omega)_{0\frac{1}{2}}, (\Omega\Omega)_{00}$			
$-\frac{8}{81}$	<u>17</u> 9	$(\Sigma \cdot \Sigma \cdot)_{0\frac{3}{2}}$			
$-\frac{7}{81}$	$\frac{16}{9}$	$(\Sigma\Delta)_{2\frac{1}{2}}$			
$-\frac{5}{81}$	$\frac{14}{9}$	$(\Sigma^* \Sigma^*)_{02}, (\Sigma\Sigma^*)_{20}, (\Xi^* \Xi^*)_{01}$			
$-\frac{1}{27}$	$\frac{4}{3}$	$(\Delta \Xi^{*})_{02}, (\Delta \Xi^{*})_{31}, (N\Xi^{*})_{20}, (N\Xi^{*})_{00}, (\Xi\Sigma^{*})_{1\frac{1}{2}}, (\Sigma^{*}\Omega)_{01}, (\Lambda\Omega)_{10}, (\Xi\Xi^{*})_{10},$			
$-\frac{7}{243}$	$\frac{34}{27}$	$(\Xi \Delta)_{11}$			
$-\frac{1}{54}$	$\frac{7}{6}$	$(\Sigma\Delta)_{13/2}$			
- <mark>1</mark> 81	<u>10</u> 9	$(\mathrm{NN})_{01}, (\mathrm{NN})_{10}, (\Delta\Delta)_{12}, (\Delta\Delta)_{21}, (\Delta\Sigma^{*})_{15/2}, (\Delta\Sigma^{*})_{2\frac{3}{2}}, (\Delta\Sigma^{*})_{1\frac{3}{2}}, (\Delta\Sigma^{*})_{2\frac{1}{2}}, (\Delta\Sigma$			
		$(\Delta \Xi^{*})_{12}, (\Delta \Xi^{*})_{21}, (\Xi \Delta)_{21}, (N \Sigma)_{0\frac{3}{2}}, (N \Sigma^{*})_{2\frac{1}{2}}, (\Sigma \Sigma)_{02}, (\Sigma \Xi^{*})_{0\frac{3}{2}}, (\Sigma \Xi)_{1\frac{3}{2}},$			
		$(\Xi\Xi)_{01}, (\Sigma^{*}\Sigma^{*})_{20}, (\Sigma^{*}\Xi^{*})_{1\frac{1}{2}}, (\Sigma^{*}\Xi^{*})_{2\frac{1}{2}}, (\Xi^{*}\Xi^{*})_{10}, (\Sigma^{*}\Omega)_{11}, (\Xi^{*}\Omega)_{1\frac{1}{2}}$			
$-\frac{1}{243}$	$\frac{28}{27}$	$(N\Xi^*)_{11}(\Sigma^*\Sigma^*)_{11}$			
0		$(N\Sigma)_{1\frac{1}{2}}, (N\Lambda)_{1\frac{1}{2}}, (N\Lambda)_{0\frac{1}{2}}, (\Lambda\Lambda)_{00}, (\Lambda\Xi)_{0\frac{1}{2}}, (N\Sigma^{*})_{1\frac{3}{2}}, (N\Omega)_{1\frac{1}{2}}, (N\Omega)_{2\frac{1}{2}}.$			
		$(\Sigma^{*}\Xi^{*})_{3\frac{3}{2}},(\Delta\Omega)_{2\frac{3}{2}},(\Delta\Omega)_{3\frac{3}{2}},(\Delta\Omega)_{1\frac{3}{2}},(\Delta\Omega)_{0\frac{3}{2}},(\Sigma^{*}\Xi^{*})_{1\frac{3}{2}}$			
$\frac{1}{243}$	$\frac{26}{27}$	(ΔΞ [*]) ₁₁			
$\frac{1}{162}$	<u>17</u> 18	$(\Sigma \Xi^{*})_{2\frac{1}{2}}, (\Delta \Xi^{*})_{1\frac{1}{2}}$			
1	89	$(\mathbf{N}\Xi)_{10}, (\mathbf{N}\Delta)_{12}, (\mathbf{N}\Delta)_{21}, (\boldsymbol{\Sigma}\Delta)_{1\frac{1}{2}}, (\boldsymbol{\Sigma}\Delta)_{1\frac{5}{2}}, (\boldsymbol{\Xi}\Omega)_{1\frac{1}{2}}, (\boldsymbol{\Delta}\Delta)_{01}, (\boldsymbol{\Delta}\Delta)_{10}, (\mathbf{N}\boldsymbol{\Sigma}^{\star})_{0\frac{1}{2}},$			
81		$(\Delta \Sigma^*)_{0\frac{3}{2}}, (\Delta \Sigma^*)_{1\frac{1}{2}}, (\Delta \Xi^*)_{01}, (\Sigma^* \Sigma^*)_{00}, (\Sigma^* \Sigma^*)_{0\frac{1}{2}}$			
$\frac{5}{243}$	$\frac{22}{27}$	$(\Sigma\Sigma)_{11}, (\Sigma\Sigma^*)_{11}$			
$\frac{2}{81}$	$\frac{7}{9}$	(ΣΣ) ₀₀			
$\frac{7}{243}$	$\frac{20}{27}$	(NE) ₁₁			
1	$\frac{2}{3}$	$(\Lambda\Sigma)_{01}, (\Lambda\Sigma)_{11}, (\Lambda\Sigma^{*})_{11}, (\Lambda\Sigma^{*})_{21}, (\Sigma\Sigma^{*})_{10}, (\Sigma\Sigma^{*})_{12}, (\Sigma\Sigma^{*})_{21}, (\Sigma\Omega)_{21}, (\Xi\Delta)_{22}, (\Xi\Delta)_{22}, (\Xi\Delta)_{21}, (\Xi\Delta)_{21}, (\Xi\Delta)_{22}, (\Xi\Delta)_{21}, (\Xi\Delta)_{21}, (\Xi\Delta)_{21}, (\Xi\Delta)_{22}, (\Xi\Delta)_{21}, (\Xi\Delta)_{21}, (\Xi\Delta)_{21}, (\Xi\Delta)_{21}, (\Xi\Delta)_{22}, (\Xi\Delta)_{21}, (\Xi\Delta)_{21}, (\Xi\Delta)_{22}, (\Xi\Delta)_{21}, (\Xi\Delta)_{22}, (\Xi\Delta)_{21}, (\Xi\Delta)_{22}, (\Xi\Delta)_{21}, (\Xi\Delta)_{22}, (\Xi\Delta)_{21}, (\Xi\Sigma)_{21}, $			
27		$(\Xi\Xi^*)_{11}, (\Delta\Xi^*)_{22}, (\Sigma\Sigma^*)_{31}, (\Sigma^*\Omega)_{21}$			
$\frac{4}{81}$	59	$(\Sigma E)_{1\frac{1}{2}}, (\Lambda E)_{1\frac{1}{2}}$			
1 18	$\frac{1}{2}$	$(\Lambda\Delta)_{1\frac{3}{2}}, (\Lambda\Delta)_{2\frac{3}{2}}, (\Lambda\Xi)_{2\frac{1}{2}}, (\Sigma\Xi^{*})_{1\frac{1}{2}}$			
<u>5</u> 18	4 9	$(NE)_{01}, (NE^{*})_{10}, (NE^{*})_{21}, (\SigmaE^{*})_{1\frac{3}{2}}, (\SigmaE^{*})_{2\frac{3}{2}}, (\Xi\Sigma^{*})_{1\frac{3}{2}}, (\Xi\Sigma^{*})_{2\frac{1}{2}}, (\Xi\Sigma^{*})_{2\frac{1}{2}}, (\Xi\Sigma^{*})_{2\frac{3}{2}}, (\Xi\Sigma^{*})_{2\frac{1}{2}}, (\Xi\Sigma^{*})_{2\frac{3}{2}}, (\Xi\Sigma^{*})_{2\frac{1}{2}}, (\Xi\Sigma^{*})$			
		$(\Sigma^* \Sigma^*)_{22}, (\Xi^* \Xi^*)_{21}$			

表 1 部分 L=0 态的 〈P^{*/c} 〉数值表

续	表
---	---

$\langle P^{sfe}_{36} angle$	$\langle 1-9P_{36}^{ofe} \rangle$	(AB) _{ST}	
$\frac{13}{162}$	<u>5</u> 18	$(\Sigma\Delta)_2 \frac{3}{2}$	
$\frac{7}{81}$	$\frac{2}{9}$	$(\mathbb{N}\Sigma)_{1\frac{3}{2}}, (\mathbb{N}\Sigma^{*})_{1\frac{1}{2}}, (\Sigma\Sigma^{*})_{22}, (\Sigma\Omega)_{11}, (\Xi\Xi)_{10}, (\Xi\Delta)_{12}, (\Xi\Xi^{*})_{21}$	
8 81	$\frac{1}{9}$	$(N\Sigma)_{0\frac{1}{2}}, (N\Sigma^{*})_{2\frac{3}{2}}, (\Sigma\Xi)_{0\frac{1}{2}}, (\Sigma^{*}\Xi^{*})_{2\frac{3}{2}}$	
		$(\mathbf{N}\Delta)_{11}, (\mathbf{N}\Delta)_{22}, (\Sigma\Delta)_{2\frac{5}{2}}, (\Lambda\Omega)_{20}, (\Xi\Xi^{*})_{20}, (\Xi\Omega)_{2\frac{1}{2}}, (\Delta\Delta)_{23}, (\Delta\Delta)_{32}, (\Delta\Sigma^{*})_{2\frac{5}{2}}, (\Delta$	
1 9	0	$(\Delta\Sigma^{*})_{3\frac{5}{2}}, (\Delta\Sigma^{*})_{3\frac{3}{2}}, (\Delta\Xi^{*})_{32}, (\Sigma^{*}\Xi^{*})_{2\frac{1}{2}}, (\Sigma^{*}\Xi^{*})_{3\frac{1}{2}}, (\Sigma^{*}\Omega)_{31}, (\Xi^{*}\Xi^{*})_{30},$	
		$(\Xi^* \Omega)_{2\frac{1}{2}}, (\Xi^* \Omega)_{3\frac{1}{2}}, (\Omega\Omega)_{20}$	

表 2 部分 L=1 态的 $\langle P_{34}^{efc} \rangle$ 数值表

$\langle P^{\sigma f e}_{36} \rangle$	$\left<1-9P_{36}^{ofc}\right>$	(AB) _{ST}	
$-\frac{1}{27}$ $\frac{10}{9}$		$(\Delta\Delta)_{13}, (\Delta\Delta)_{31}, (\Delta\Delta)_{02}, (\Delta\Delta)_{20}, (\Omega\Omega)_{10}$	
0	1	$(N\Omega)_{1\frac{1}{2}}, (N\Omega)_{2\frac{1}{2}}, (\Delta\Omega)_{0\frac{3}{2}}, (\Delta\Omega)_{1\frac{3}{2}}, (\Delta\Omega)_{2\frac{3}{2}}, (\Delta\Omega)_{3\frac{3}{2}}$	
$\frac{31}{243}$	<u>50</u> 81	(NN) ₁₁	
7 27	$\frac{2}{9}$	(NN) ₀₀	
13	U	($\Delta\Delta$)33 , (142) 30	

从以上两个表中可以看出以下几点:(1)由于 S 波的归一化矩阵元正比于 1-9(P_{4}^{c}),而 P 波的归一化矩阵元正比于 1 – 3(P_{4}^{c})(见(10)及(11)式),所以夸克交换效应 在 S 波中的作用更为明显,这一点的物理图像是很清楚的,因为两个粒子在 P 波运动 中,相对距离不如 S 波时靠近,而夸克交换效应只当两个重子靠近时才能显现,所以在越 高的分波状态下,夸克交换的作用越小.(2)对于 S 波的情况,1-9(P%)值的范围为 2---0. 很显然此值等于1时代表没有夸克交换效应,因此它偏离1的大小反映了夸克交换效 应的程度。对于那些1-9(P36)接近于1的状态,由于夸克交换效应不重要,这些态在重 子层次就能得到较好地描述,氘核就是这类的状态。从表1中可看到1-9< P%)的最小值 为 0, 这时夸克阻塞效应十分严重, 两个重子集团根本不可能形成在六夸克体系中空间对 称性为[6]、的状态,这时两个重子之间由于泡利阻塞的作用而存在着很强的短程排斥 心. 另一个极端的情况是 $1-9\langle P_x^{\prime\prime}\rangle \ge 2$ 的情况,这时夸克交换效应也很重要,但它起的 不仅不是阻寒效应而是使两个集团"融合"的作用,它在六夸克体系中空间对称性为[6], 的成分最大,因此这是一类由于夸克交换效应的作用而有助于形成深度束缚双重子态的 情况. (3)对于 P 波情况 1-3 $\langle P_{36}^{\prime\prime c} \rangle$ 值的范围由 $\frac{10}{9}$ 到 0. 同样当 1-3 $\langle P_{36}^{\prime\prime c} \rangle \cong 0$ 时,这时泡 利阻塞效应特别严重,两个重子之间会存在极强的排斥心.但是对于 P 波的情况,不存在 有助于"融合"状态,因此夸克交换效应在 P 波情况下或者是不重要,或者是提供排斥心.

从以上关于两个重子集团波函数中夸克交换效应的分析中知道夸克效应是两集团间 距很近时才能表现出来,有两种情况是检验夸克自由度表现的重要场所.一种是 S 波 1-9〈P^{yre}〉=2的情况,这时有可能形成比氘核束缚得更深的双重子态.另一种是泡利阻 塞效应很严重的情况,不论在 S 波还是 P 波都有这种情况,在散射的过程中它们有较大的排斥心半径,可以通过相移的数据来考查此效应的影响.

3 夸克交换作用在两重子体系动能中的作用

在上一节中分析了波函数归一化中的夸克交换效应.看到对于各种不同的两重子系统,由于它们的自旋和味道的对称性不同,夸克交换效应很不相同.有的存在着严重的泡利阻塞作用,有的可以有助于两重子融合,也有不少情况夸克交换效应并不重要.这一节研究夸克交换在动能中的作用.首先计算了动能矩阵元随生成坐标 S.的变化:

$$\langle kin(S_i) \rangle^L = \frac{\langle \phi_{AB}^{LST}(S_i) | \sum_{i=1}^{5} t_i - T_G | \Psi_{AB}^{LST}(S_i) \rangle}{\langle \phi_{AB}^{LST}(S_i) | \Psi_{AB}^{LST}(S_i) \rangle}, \qquad (12)$$

这里 $\sum_{i} t_i \in 6$ 个夸克的动能算符, T_c 是质心的动能算符. $\phi_{AB}^{LST}(S_i)$ 和 $\Psi_{AB}^{LST}(S_i)$ 分别由 (2)及(3)式表示。对 L = 0 时(12)式的具体表示为

$$\langle kin(S_i) \rangle^{L=0} = K_0 \left(\frac{13}{3} - \frac{S_i^2}{2b^2} \right) + \frac{S_i^2}{2b^2} K_0 \frac{\cosh\left(\frac{3S_i^2}{4b^2}\right) - 9\langle P_{36}^{ofc} \rangle \cosh\left(\frac{S_i^2}{4b^2}\right)}{\sinh\left(\frac{3S_i^2}{4b^2}\right) - 27\langle P_{36}^{ofc} \rangle \sinh\left(\frac{S_i^2}{4b^2}\right)},$$

其中 $K_0 = \frac{3}{4}\omega, \omega = \frac{1}{mb^2}, m$ 是组分夸克质量. 同样地 L = 1 时的表达式为:

$$\frac{\langle kin(S_{i})\rangle^{l=1}}{K_{0}\left\{\left[\left(\frac{11}{3}-\frac{S_{i}^{2}}{2b^{2}}\right)J_{1}\left(\frac{3S_{i}^{2}}{4b^{2}}\right)+\frac{S_{i}^{2}}{2b^{2}}J_{0}\left(\frac{S_{i}^{2}}{4b^{2}}\right)\right]-9\langle P_{36}^{ofc}\rangle\left[\left(\frac{11}{3}-\frac{S_{i}^{2}}{2b^{2}}\right)J_{1}\left(\frac{S_{i}^{2}}{4b^{2}}\right)+\frac{S_{i}^{2}}{6b^{2}}J_{0}\left(\frac{S_{i}^{2}}{4b^{2}}\right)\right]\right\}}{\left[J_{1}\left(\frac{3S_{i}^{2}}{4b^{2}}\right)-9\langle P_{36}^{ofc}\rangle J_{1}\left(\frac{S_{i}^{2}}{4b^{2}}\right)\right]$$

这里J。及J,是虚贝塞尔函数.

图

1 及图 2 分别给出了
$$V_{kin}^{L=0}(S_i)$$
和 $V_{kin}^{L=1}(S_i)$ 随 S_i 的变化. 这里
 $V_{kin}^{L}(S_i) = \langle kin(S_i) \rangle^{t} - kin0,$ (15)

 $kin0 = \frac{13}{3}K_0$ 是个常数,它代表集团内部的夸克动能及两个集团在无穷远处的相对运动动能.图1中给出了4条曲线,实线代表〈 P_{36}^{ofc} 〉=0的情况,即无夸克交换效应的情况;点线对应 $\bar{\omega}\langle P_{36}^{ofc}\rangle = -\frac{1}{81}$,即氘核的情况;虚线是〈 $P_{36}^{ofc}\rangle = -\frac{1}{9}$,最吸引的情况;点划线则是〈 $P_{36}^{ofc}\rangle = -\frac{7}{81}$,强排斥那类的情况.图2也给出了4条曲线,实线仍是〈 $P_{36}^{ofc}\rangle = 0$ 的情况;点线对应 $\langle P_{36}^{ofc}\rangle = -\frac{1}{27}$;虚线是〈 $P_{36}^{ofc}\rangle = -\frac{7}{27}$,(NN)₀₀属于此类情况;点划线则是〈 $P_{36}^{ofc}\rangle = \frac{1}{3}$,最排斥 的情况.从图中可以看出:(1)夸克交换效应在 S 波中的作用比 P 波情况明显.(2)在 S 波情况下,不同〈 P_{36}^{ofc} 〉的情况 $V_{46}^{ico}(S_i$)的曲线很不相同.尽管在 S_i 很小的地方几条曲线都表现出排斥特点,但随 S_i 增大它们的不同就显示出来了.〈 P_{36}^{ofc} 〉=0(即夸克交换效应不重要的情况)的曲线一直保持正值但逐渐下降趋向于 0;而〈 P_{36}^{ofc} 〉= - $\frac{1}{9}$ 的曲线(即夸克交换效应不重要的情况)的曲线一直保持正值但逐渐下降趋向于 0;而〈 P_{36}^{ofc} 〉= - $\frac{1}{9}$ 的曲线(即夸克交换有助于两重子融合的情况)则出现相当深的吸引特点.另一个极端情况是〈 P_{36}^{ofc} 〉= 1/9, 图 1 中给出了〈 P_{36}^{ofc} 〉= 7/81 的曲线,它对应的是($N\Sigma$)₁₃ 情况,曲线表现出特别强的排斥特点.(3)在 P 波中所有的情况都表现为排斥性,〈 P_{36}^{ofc} 〉= 1/3 的情况具有极强的排斥作用. 由于动能算符与自旋味道和颜色均无关,所以动能算符的曲线的不同完全来自于〈 P_{36}^{ofc} 〉, 即夸克交换效应.为了进一步考查动能中的夸克效应,我们用共振群方法^[1,2],对

$$H = \sum_{i} t_{i} - T_{G} + \sum_{i < j} V_{ij}^{conf}$$
(16)

做了动力学求解.由于颜色禁闭势几乎完全对两个色单态的集团之间相互作用不提供任何贡献,所以对(16)式的求解实际上就是只考虑动能算符的动力学解.我们计算了两个 典型的情况: $(\Omega\Omega)_0$ ·态,它的 $\langle 1 - 9P_{36}^{nf} \rangle = 2 及氘核(NN)_10$ 态,它的 $\langle 1 - 9P_{36}^{nf} \rangle = \frac{10}{9}$.结果 表明前者是束缚态,结合能 $B_{(\Omega\Omega)_0+} = 17$ MeV;而氘核是不束缚的,结合能 $B_d = -23$ MeV.这 些结果表明了夸克交换效应的重要性,并且与相互作用的模型无关.

图 1 S 波动能分析图

图 2 P 波动能分析图

当然在实际的物理过程中,必须考虑夸克间的相互作用.上述对夸克交换效应的分析在考虑了相互作用之后是否还起着重要的作用,这就需要进行包含了夸克间作用 V_{ii}的动力学计算.然而 V_{ii}的选取是模型相关的.我们曾用手征 SU(3)夸克模型⁽³⁾ 计算了核子 – 核子散射相移和超子 – 核子的截面,取得了与实验相符的结果⁽⁴⁾.在这个模型中

$$H = \sum_{i} t_{i} - T_{G} + \sum_{i < j} \left(V_{ij}^{\text{conf}} + V_{ij}^{\text{oge}} + V_{ij}^{\text{eh}} \right), \qquad (17)$$

V^{cond}是禁闭势,取为谐振子势,V^{cord}是单胶子交换势,V^{ch}是手征场耦合势.它们的具体表达

式以及参数的选取可参阅文献[3,4].文献[5,6]中给出的双重子态结合能的结果是采用 此模型并选取与文献[4]中同样的参数计算的.还分析了不同手征场耦合的影响.为了 说明问题,列出文献[5,6]中计算的6个对称性为 $\langle 1 - 9P_{36}^{sf} \rangle = 2$ 的态在3种 V_{ij}^{sh} 下的结果.

表 3 〈P^{sfe}〉=2的6个双重子态的结合能(MeV)

	V_{ij}^{ch}		
(AB) _{st}	<i>SU</i> (3)	$SU(2) + \kappa, \eta$	SU(2)
(ΩΩ) ₀₀	116	74	54
(Ξ°Ω) ₀ ¹ /2	92	59	52
$(\Sigma^{*}\Omega)_{0\frac{5}{2}}$	25	12	22
$(\Sigma^* \Delta)_{3\frac{1}{2}}$	26	78	76
$(\Delta\Delta)_{03}$	16	6	13
$(\Delta\Delta)_{30}$	22	65	63

 $\mathfrak{E}: m_u = 313 \text{MeV}, m_s = 470 \text{MeV}, b_u = 0.505 \text{MeV}$

从表 3 中可以看到这 6 个态在不同手征耦合模型下都具有较大的结合能.这说明了 在选取基本合理的 V_0 的情况下,对称性的特点仍然起着相当重要的作用. $\langle 1 - 9 P_{56}^{opt} \rangle = 2$ 的态中的夸克交换效应确实有助于两个集团的"融合",有可能形成多夸克态.同时还注 意到这 6 个态都是由两个十重态重子组成的,而十重态中的 Δ,Σ' 及 Ξ' 都是可以发生强 衰变的,只有 Ω 只能通过弱作用衰变.因此这 6 个态中除了 (ΩΩ)₀₀以外的 5 个态都是具 有一定宽度的共振态,除非它们的结合能特别大,以致使它们的能量达到在发生强衰变的 阈能以下,这时它们才有可能具有较长的寿命.在手征 *SU*(3)夸克模型的计算中,在 5 个 有强衰变的态中,(Ξ' Ω)₀,最有可能低于强衰变的阈能¹⁶¹,而其他的 4 个态都远离于强 衰变的阈能,其中 d' (ΔΔ)₃₀更是比强衰变的阈能(NNππ)高 250MeV 以上¹²¹.很有兴趣的 是在这 6 个态中,还有一个态(ΩΩ)₀₀是只能发生弱衰变的,并且它的结合能也很大,它是 最有兴趣的双重子态候选者^[5].

值得指出的还有另一类对称性 $\langle 1 - 9P_{38}^{ofc} \rangle \cong 1$ 的两重子体系,手征 SU(3)模型的结果 告诉我们它们或者不束缚,或是弱束缚态,氘核就是一个弱束缚的例子. $(N\Lambda)_{0\frac{1}{2}}$, $(N\Lambda)_{1\frac{1}{2}}, (N\Sigma)_{1\frac{1}{2}} 以及(\Lambda\Lambda)_{00} 的(1 - 9\langle P_{38}^{ofc} \rangle)$ 都等于 1, 手征 SU(3)模型的结果是它们都不 束缚,与实验结果一致. 这一结果告诉我们由于 N, A, Σ 等八重态重子组成的两个重子系统,在很多情况下夸克交换效应不重要,这些态的结合情况应可在重子层次上描述. 但也 有少数情况,例如 $(N\Sigma)_{0\frac{1}{2}} Q(N\Sigma)_{1\frac{3}{2}}$ 泡利阻塞效应较大,或许在实验中会表现出夸克效应. 这一分析也许可以说明为什么建立在以强子自由度为基础的 QHD 理论能如此成功的描述了由(p,n)组成的原子核大量的实验现象,以及为什么在强子层次预言的 $_{A}^{n}$ Be 超 核的对称性为[5]的超对称态能与后来实验上的测量值如此接近^[3]. 可以设想由 p, n, A 组成的通常的核物质中,建立在强子层次的 QHD 理论仍然是一个有效的描述方法.

4 总结

根据前面的分析夸克效应是两集团相距很近时才显现出来的效应,它的性质是由对

称性决定的,双重子态结合能和两重子散射研究有可能是检验夸克效应的重要场所.理 论分析的结果与当前物理实验相吻合而无明显矛盾,这说明对称性分析所提供的信息可 以为寻找夸克效应提供方向.在〈1-9P[%]〉偏离1大的情况更有可能表现出较明显的夸 克效应.特别有兴趣的是夸克交换的"融合"作用将有助于形成深束缚的双重子态. (ΩΩ)₀, 就是最典型的一个,有待实验的验证.

同时我们也看到,对于 p,n,Λ 所组成的核物质中,NN,NA,AA 情况的夸克交换效应 均较小,应可在重子层次来描述它们.所以建立在强子层次的 QHD 理论仍然有望是由 p, n,Λ 组成的通常核物质中,在其适用尺度内的有效理论.还需特别指出,并不是在 p,n,Λ 组成的体系中就没有夸克效应.在某些物理量的精细测量中,或在高能现象中仍有可能 表现出某种夸克效应.

参考文献(References)

- 1 Wheeler J A. Phys. Rev., 1973, 52: 1083, 1107
- 2 Wildermuth K, TANG Y C. A Unified Therory of the Nucleus (Vieweg, Braunschweig, 1977)
- 3 ZHANG Zong-Ye, YU You-Wen, DAI Lian-Rong. HEP & NP, 1996, 20(4):363—368 (in Chinese) (张宗烨,余友文,戴连荣. 高能物理与核物理,1996, 20(4):363)
- 4 ZHANG Zong-Ye, YU You-Wen, SHEN Peng-Nian et al. Nucl. Phys., 1997, A625:59
- 5 YU You-Wen, ZHANG Zong-Ye, YUAN X Q. Commun. Theor. Phys., 1999, 31:1; ZHANG Zong-Ye, YU You-Wen, CHING C R et al. Phys. Rev., 2000, C61:065204
- 6 LI Q B, SHEN P N, ZHANG Z Y, et al. Nucl. Phys., 2001, A683:487
- 7 YUAN X Q, ZHANG Z Y, YU Y W, et al. Phys. Rev., 1999, C60:045203
- 8 ZHANG Zong-Ye, LI Guang-Lie, SHEN Jian-Ping. Transactions of the New York Academy of Sciences Series II, 1980, 40: 274-286

An Analysis of Quark Effect in Two Baryon System

ZHANG Zong-Ye YU You-Wen

(Institute of High Energy Physics, CAS, Beijing 100039, China)

Abstract The quark effect in the two baryon systems is studied by making an analysis of the quark exchange terms. The results point out that the quark effect becomes visible only when the two baryon clusters are close to each other. So its influence is much more important in the S waves than in P waves, and the expectation value of the permutation operator in the spin-flavor-color space plays significant role. For some spin-flavor states, the Pauli Blocking Effect is very serious, there should be a big repulsive core radius between these two baryons. But for some other spin-flavor states, the quark exchange effect is favorable for mixing the two baryon clusters together to form dibaryon. Therefore the data of the phase shifts of the baryon-baryon scattering and the binding energies of the two baryon systems are cardinal in examining the quark effect.

Key words quark exchange effect, quark model, dibaryon

Received 27 November 2001

^{*} Supported by National Natural Science Foundation of China (10047002)