¹⁴⁶Tb的多粒子激发特性研究^{*}

谢成营^{1,2;1)} 周小红¹ 郑勇¹ 张玉虎¹ 郭应祥¹ 雷祥国¹ 柳敏良¹

1 (中国科学院近代物理研究所 兰州 730000) 2 (中国科学院研究生院 北京 100049)

摘要 利用在東γ谱学技术、通过反应¹¹⁸Sn(³²S,1p3n)研究了¹⁴⁶Tb的高自旋态能级结构. 基于实验测量结果,建立了激发能达 8.39MeV 的¹⁴⁶Tb核的能级纲图. 双奇核¹⁴⁶Tb相对于双满闭 壳¹⁴⁶Gd核,多一个质子和缺少一个中子,它的低位激发态是二准粒子态,更高的激发态是四准粒子态,或二准粒子态与其偶偶核芯低位激发态的耦合.利用经验壳模型对部分全顺排组态的激发能进行 了理论计算.

关键词 在束γ谱学 高自旋态 能级纲图 经验壳模型

1 引言

对于 Z = 65的球形核¹⁴⁶Tb,它的激发态应该是 价核子激发形成的.早期的在束研究^[1,2]和¹⁴⁶Dy 的 β 衰变研究^[3]对¹⁴⁶Tb的低位激发态进行了研究,这 些研究提供了相关价质子和中子空穴之间剩余相互 作用的重要信息.¹⁴⁶Tb的高位能级应该是由一个价 质子和一个价中子空穴耦合到¹⁴⁶Gd核实激发态形成 的.在本工作之前,R.Collatz等人用¹⁴⁴Sm(⁶Li,4n) ¹⁴⁶Tb和¹²⁰Sn(³¹S,5n)¹⁴⁶Tb反应建立了¹⁴⁶Tb的能 级纲图,并用壳模型计算解释了其高自旋态能级结 构^[2].本工作利用重离子诱发的熔合蒸发反应¹¹⁸Sn (³²S,1p3n)布居了¹⁴⁶Tb的非常高自旋的激发态,极大 地更新了¹⁴⁶Tb的能级纲图,并利用经验壳模型对部 分能级的能量进行了理论计算.

2 实验和结果

实验是在日本原子力研究所(JAERI)串列加速 器实验室完成的.实验进行了γ射线的激发函数, γ射线的各向异性度, X-γ和γ-γ-t符合测量. γγ符合数据以事件方式记录到数据文件中,共获取了 约350×10⁶ 个符合事件.基于与¹⁴⁶Tb的已知γ射线^[2] 的符合关系,把新发现的41条γ射线指认给了¹⁴⁶Tb. 通过仔细地比较和分析每条γ射线的拉门谱,结合γ 跃迁的强度平衡和交叉跃迁等信息,建立了如图1所 示的¹⁴⁶Tb高自旋态能级纲图.基于本工作在符合模 式下测量的γ射线各向异性度和早期测量的内转换 系数^[2],建议了纲图中能级自旋值.本工作所有指认 给¹⁴⁶Tb的γ射线都与590.7keVγ跃迁符合.因此,本

^{*}国家自然科学基金(10005012, 10025525)和国家重点基础研究发展规划项目(TG2000077400)资助

¹⁾ E-mail: xiecy@impcas.ac.cn

工作建议的¹⁴⁶Tb能级纲图是建立在 $\pi h_{11/2} \otimes \nu h_{11/2}^{-1}$ 10⁺同质异能态($T_{1/2} = 1.18 \text{ ms}$)^[1]之上的.详细的实验和数据分析细节可参考文献[4].

3 理论计算和讨论

本工作所建议的¹⁴⁶Tb能级纲图中不规则的能级 间隔以及众多的平行跃迁清楚地表明了¹⁴⁶Tb核具 有典型的单粒子结构特性.¹⁴⁶Tb的基态是5⁻,其组 态是 $\pi h_{11/2} v d_{3/2}^{-1} \pi \pi h_{11/2} v s_{1/2}^{-1}$ 的混合^[5].6⁻和7⁻激 发态是由一个 $h_{11/2}$ 价质子与一个 $d_{3/2}^{-1}$ 或 $s_{1/2}^{-1}$ 价中 子空穴耦合形成的^[5].¹⁴⁶Tb的 $J^{\pi} = 10^+ \pi 11^+$ 的 晕态是由一个 $h_{11/2}$ 价质子和一个 $h_{11/2}^{-1}$ 价中子空穴 耦合形成的二准粒子态^[2].590.7keVγ射线是本工 作中观测到的¹⁴⁶Tb的最强的γ射线,该偶极跃迁 退激的1371keV能级应该是 $\pi h_{11/2} \otimes v h_{11/2}^{-1}$ 多重态 角动量最大的分态. 很明显,位于1371keV11⁺能级上面的激发态应涉及到¹⁴⁶Gd核实的激发. ¹⁴⁶Gd的第一激发态是位于1.58MeV的八极振动态3⁻,其组态的主要成分是 $\pi(h_{11/2}d_{5/2}^{-1})$,同时也混进了 $\nu(f_{7/2}s_{1/2}^{-1})$ 和 $\nu(h_{9/2}d_{3/2}^{-1})$ 组态^[6,7]. 10⁻, 11⁻, 12⁻和13⁻能级为 $\pi h_{11/2}\nu h_{11/2}^{-1} \otimes 3^{-}$ 七重态角动量不同的分态^[2],如图2所示. 八极振动态3⁻的主要成分是 $\pi(h_{11/2}d_{5/2}^{-1})$,根据Pauli-blocking原理,它与 $\pi h_{11/2}\nu h_{11/2}^{-1}$ 局能提供的最大自旋值应是13. 当 $\pi h_{11/2}\nu h_{11/2}^{-1}$ 与核芯3⁻态耦合时,主要成分 $\pi(h_{11/2}d_{5/2}^{-1})$ 在14⁻分态中应该被Pauli原理有效禁戒,导致14⁻态的能量被相应抬高.下面采用文献[8,9]所描述的方法来计算($\pi h_{11/2}\nu h_{11/2}^{-1} \otimes 3^{-}$)₁₄-全顺排分态的激发能:

$$\begin{split} E^{^{146}\mathrm{Tb}}_{(\pi h_{11/2} \vee h_{11/2}^{-1} \otimes 3^{-})_{14^{-}}} &= E^{^{146}\mathrm{Tb}}_{(\pi h_{11/2} \vee h_{11/2}^{-1})_{11^{+}}} + E^{^{146}\mathrm{Gd}}_{3^{-}} + \Delta^{^{147}\mathrm{Tb}}_{(\pi h_{11/2} \otimes 3^{-})_{17/2^{+}}} + \Delta^{^{145}\mathrm{Gd}}_{(\nu h_{11/2}^{-1} \otimes 3^{-})_{17/2^{+}}} + S = \\ E^{^{146}\mathrm{Tb}}_{(\pi h_{11/2} \vee h_{11/2}^{-1})_{11^{+}}} + E^{^{146}\mathrm{Gd}}_{3^{-}} + (E^{^{147}\mathrm{Tb}}_{(\pi h_{11/2} \otimes 3^{-})_{17/2^{+}}} - E^{^{147}\mathrm{Gd}}_{\pi h_{11/2}} - E^{^{146}\mathrm{Gd}}_{3^{-}}) + \\ (E^{^{145}\mathrm{Gd}}_{(\nu h_{11/2}^{-1} \otimes 3^{-})_{17/2^{+}}} - E^{^{145}\mathrm{Gd}}_{\nu h_{11/2}^{-1}} - E^{^{146}\mathrm{Gd}}_{3^{-}}) + S = 1371 + 15794 + 4586 + 104 = 3513 \mathrm{keV}. \end{split}$$

图 2 ¹⁴⁶Tb 的部分能级及建议的组态

这里结合能项 $S = B_{147}_{Tb} + B_{145}_{Gd}B_{146}_{Tb} - B_{147}_{Tb} - B_{145}_{Gd} + B_{146}_{Gd} - B_{146}_{Tb} - B_{146}_{Gd} = 0, E 表示相$ 关核 ¹⁴⁶Gd ^[6,7], ¹⁴⁷Tb ^[10,11], ¹⁴⁵Gd ^[12]和 ¹⁴⁶Tb 的激发 $能, <math>\Delta$ 表示p-n剩余相互作用. 计算值比实验上观 测到的14⁻能级的能量(3285keV)要高些,14⁻能级 应该存在着组态混合.¹⁴⁶Gd的第一2⁺和4⁺激发 态是质子粒子-空穴激发态,其主要组态已分别 指认为 $\pi(s_{1/2}d_{5/2}^{-1})$ 和 $\pi(d_{3/2}d_{5/2}^{-1})^{[7,13]}$.图1中左边那 些激发态很有可能对应的是 $(\pi h_{11/2} \vee h_{11/2}^{-1} \otimes 2^+)_{13^+}$ 和 $(\pi h_{11/2} \vee h_{11/2}^{-1} \otimes 4^+)_{15^+}$ 组态,具体如图2所示.

由于 N = 82 的中子闭壳比 Z = 64 的质子亚闭壳 稳定,质子更容易被激发. 多粒子激发,如位于 $h_{11/2}$, $d_{5/2}$, $g_{7/2}$ 轨道的质子或质子空穴与一个 $h_{11/2}$ 中子空穴耦合,在¹⁴⁶Tb的高自旋态中占有 重要作用. $\pi h_{11/2} v h_{11/2}^{-1} \otimes 3^{-}$ 多重态能提供的最大 自旋值是13. 因此,位于13⁻ (2578keV)以上的高 自旋态(如图1所示的中间右边的负字称态)很可能 是 $\pi h_{11/2}^{2} d_{5/2}^{-1} \nu h_{11/2}^{-1}$ 和 $\pi h_{11/2}^{2} g_{7/2}^{-1} \nu h_{11/2}^{-1}$ 四 准 粒子 激发 态.下面用经验壳模型^[14]来估算 ($\pi h_{11/2}^{2} d_{5/2}^{-1} \nu h_{11/2}^{-1}$)₁₈-和 ($\pi h_{11/2}^{2} g_{7/2}^{-1} \nu h_{11/2}^{-1}$)₁₉- 全顺排态组态的激发能.分别 把 ($\pi h_{11/2}^{2} d_{5/2}^{-1} \nu h_{11/2}^{-1}$)₁₈- 和 ($\pi h_{11/2}^{2} g_{7/2}^{-1} \nu h_{11/2}^{-1}$)₁₉- 组态 结构分解成 [($\pi h_{11/2}^{2} d_{5/2}^{-1}$)_{25/2+} $\otimes \nu h_{11/2}^{-1}$]₁₈- 和 [($\pi h_{11/2}^{2} g_{7/2}^{-1}$)_{27/2+} $\otimes \nu h_{11/2}^{-1}$]₁₉- , 就可以用下面的表达式计算 他们的激发能:

$$E_{[(\pi h_{11/2}^{246} d_{5/2}^{-1})_{25/2} + \otimes \nu h_{11/2}^{-1}]_{18^{-}}}^{^{147} \text{Tb}} = E_{(\pi h_{11/2}^{2} d_{5/2}^{-1})_{25/2} +}^{^{147} \text{Tb}} + E_{\nu h_{11/2}}^{^{145} \text{Gd}} + S + \Delta_{(\pi d_{5/2}^{-1} \otimes \nu h_{11/2}^{-1})_{8^{-}}}^{^{144} \text{Eu}} + 2\sum_{I=10,11} \left(\sqrt{21(2I+1)} W \left(\frac{11}{2} \frac{11}{2} \frac{31}{2} \frac{11}{2}; 10I \right) \right)^{2} \cdot \Delta_{(\pi h_{11/2} \otimes \nu h_{11/2}^{-1})_{I}}^{^{146} \text{Tb}} = 4184.7 \text{ keV},$$

其中

$$\Delta_{(\pi d_{5/2}^{-1} \otimes \nu h_{11/2}^{-1})_{8^-}}^{^{144}\text{Eu}} = E_{(\pi g_{5/2}^{-1} \otimes \nu h_{11/2}^{-1})_{8^-}}^{^{145}\text{Gd}} - E_{\nu h_{11/2}^{-1}}^{^{145}\text{Gd}} - E_{\pi d_{5/2}^{-1}}^{^{145}\text{Eu}} + B_{145}_{\text{Gd}} + B_{145}_{\text{Eu}} - B_{144}_{\text{Eu}} - B_{146}_{\text{Gd}} = -430.6 \text{ keV},$$

$$\Delta_{(\pi h_{11/2} \otimes \nu h_{11/2}^{-1})_{11^+}}^{^{146}\text{Tb}} = E_{(\pi h_{11/2} \otimes \nu h_{11/2}^{-1})_{11^+}}^{^{145}\text{Gd}} - E_{\nu h_{11/2}^{-1}}^{^{145}\text{Gd}} - E_{\pi h_{11/2}}^{^{147}\text{Tb}} + B_{145}_{\text{Gd}} + B_{147}_{\text{Tb}} - B_{146}_{\text{Tb}} - B_{146}_{\text{Gd}} = 399.8 \text{ keV},$$

$$\Delta_{(\pi h_{11/2} \otimes \nu h_{11/2}^{-1})_{10^+}}^{^{146}\text{Tb}} = E_{(\pi h_{11/2} \otimes \nu h_{11/2}^{-1})_{10^+}}^{^{145}\text{Gd}} - E_{\nu h_{11/2}}^{^{147}\text{Tb}} - B_{145}_{\text{Gd}} + B_{147}_{\text{Tb}} - B_{146}_{\text{Tb}} - B_{146}_{\text{Gd}} = -191.2 \text{ keV},$$

同理 $E_{[(\pi h_{11/2}^{2} g_{7/2}^{-1})_{27/2+} \otimes v h_{11/2}^{-1}]_{19^{-1}}} = 4346.3 \text{ keV}, 这$ 里 E表示相关核的激发能^[6,7,9-12,15], W是Racah系 数^[16].结合能项 $S = B_{146} + B_{146} - B_{147} - B_{145} -$

参考文献(References)

- Broda R, Chung Y H, Daly P J et al. Z. Phys., 1984, A316: 125
- 2 Collatz R, Amzal N, Mélliani Z et al. Z. Phys., 1997, A359: 113
- 3 Zuber K, LIANG C F, Paris P et al. Z. Phys., 1987, A327: 357
- 4 XIE Cheng-Ying et al. HEP & NP, 2003, **27**(10): 884 (in Chinese)
 - (谢成营等. 高能物理与核物理, 2003, 27(10):884)
- 5 Broda R, Daly P J, Mcneill J H et al. Z. Phys., 1989, A334: 11

高位能级的组态较为困难.

4 结论

本工作利用¹¹⁸Sn(³²S, 1p3n)反应建立了激发 能达8390keV的¹⁴⁶Tb高自旋态能级纲图,其中包括 新发现的41条γ射线和新建议的27个能级. 双奇 核¹⁴⁶Tb相对于双满闭壳¹⁴⁶Gd核,多一个质子和缺 少一个中子,它的低位激发态是二准粒子态,高位激发 态是四准粒子态,或二准粒子态与其偶偶核芯低位激 发态的耦合.基于经验壳模型对部分全顺排组态激发 能的理论计算,对¹⁴⁶Tb能级结构进行了讨论.

- Kleinheinz P, Ogawa M, Broad R et al. Z. Phys., 1978, A286: 27
- 7 Yates S W, Julin R, Kleinheinz P et al. Z. Phys., 1986, A324: 417
- 8 Ercan A, Broda R, Kleinheinz P et al. Z. Phys., 1988, A329: 63
- 9 Piiparinen M, Atac A, Blomqvist J et al. Nucl. Phys., 1996, A605: 191
- 10 Broda R, Behar M, Kleinheinz P et al. Z. Phys., 1979, A293: 135
- 11 Collatz R, Kleinheinz P, ZHANG C T et al. Z. Phys., 1995, A351: 245

- 12 Pakkanen A, Muhonen J, Piiparinen M et al. Nucl. Phys., 1982, A373: 237
- 13 Ogawa M, Broda R, Zell K et al. Phys. Rev.,1978, lett. 41: 289
- 14 Jongman J R, Bacelar J C S, Balanda A et al. Nucl. Phys., 1995, A581: 165
- 15 Rakel D A, Kaczarowski R, Funk E G et al. Phys. Rev.,

1980, **C21**: 595

- 16 Lawson R D, Theory of the Nuclear Shell Model(Oxford University, Oxford,1980)
- 17 Audi G, Wapstra A H. Nucl. Phys., 1995, A595: 409
- 18 Kleinheinz P, Broda R, Daly P J et al. Z. Phys., 1979, A290: 279

Study of Multi-particle Excitation in ¹⁴⁶Tb *

XIE Cheng-Ying^{1,2;1)} ZHOU Xiao-Hong¹ ZHENG Yong¹ ZHANG Yu-Hu¹ GUO Ying-Xiang¹ LEI Xiang-Guo¹ LIU Min-Liang¹

1 (Institue of Modern Physics, The Chinese Academy of Sciences, Lanzhou 730000, China)2 (Graduate School of the Chinese Academy of Sciences, Beijing 100049, China)

Abstract High-spin Level structure of ¹⁴⁶Tb has been studied via the ¹¹⁸Sn(³²S, 1p3n)¹⁴⁶Tb reaction using techniques of in-beam γ -ray spectroscopy. Based on the experimental measured results, the level scheme of ¹⁴⁶Tb has been revised significantly and extended up to an excitation energy of 8.39 MeV. The doubly odd nucleus ¹⁴⁶Tb has one proton-particle and one neutron-hole with respect to the doubly closed nucleus ¹⁴⁶Gd, and its low-lying states should be 2-qp states, and the high-lying states should be 4-qp states or the coupling of 2-qp state to the low-lying excited states in ¹⁴⁶Gd core. The excitation of the fully-aligned 4-qp configurations can also be well reproduced using the empirical shell-model approaches.

Key words in-beam γ -spectroscopy, high-spin state, level scheme, empirical shell model

^{*} Supported by National Natural Science Foundation of China(10005012, 10025525) and Major State Basic Research Development Program(TG2000077400)

¹⁾ E-mail: xiecy@impcas.ac.cn