5 28 % WT mOREY M5 Y B
HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS

2004 4 12 H

Vol.28, Supp.
Dec., 2004

Nuclear Symmetry Energy for A =48 Isobars in
Relativistic Mean Field Theory*

BAN Shu-Fang!? MENG Jie"*%Y Ramon. A. Wyss?

1 (School of Physics, Peking University, Beijing 100871, China)
2 (Royal Institute of Technology, AlbaNova University Center, 10691 Stockholm, Sweden)
3 (Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China)
4 (Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China)

Abstract Recently it was found that the nuclear symmetry energy can be directly associated with the

mean level density and an iso-vector potential. In this paper, the nuclear symmetry energy is studied within

the relativistic mean field (RMF) theory. The potential of the RMF theory can be separated into an isovector

and isoscalar components. The nuclear binding energies in A = 48 isobaric chain calculated from RMF

theory with or without the isovector terms for effective interactions PK1, NLSH, NL3, and TM1 have been

used to analyze the nuclear symmetry energy in detail, i.e., mean level spacing e and the effective isovector

potential strength & .
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1 Introduction

According to standard textbooks“], the nuclear
symmetry energy originates from the kinetic energy
and the interaction itself. Recently it was found that
the nuclear symmetry energy can be directly asso-
ciated with the mean level density and an isovec-
tor potential by Satula and Wyss, as demonstrated
in Shyrme-Hartree-Fock (SHF) calculations™”. The
relativistic mean field (RMF) theory has been used
successfully not only for describing the properties of
nuclei near the valley of stability, but also for predict-
ing the properties of exotic nuclei with large neutron

=7 Here in this paper, we use the

or proton excess
RMF theory to study the origin of the symmetry en-
ergy with different effective interactions NLSH, NL3,
TM1 and the new developed PK1".

of the RMF theory can be separated into isovector

The potential

and isoscalar components. Then the nuclear binding

nuclear symmetry energy, relativistic mean field, iso-cranking, mean level density, isovec-

energies in a given isobaric chain calculated from
RMF with or without the isovector terms is used
to analyze the nuclear symmetry energy in detail.
In Section 2, the theoretical formalism is presented
briefly. The results and discussions are given in the

third section. At last, a brief summary is given.

2 Theoretical formalism

From standard text bookm, we know that the
semi-empirical mass formula contains a term called
the nuclear symmetry energy:

1 (N=-2)* 1
Esym = §bsymT = iasym]—‘2 (1)
with T'=(N — Z)/2, which is said to originate from
the kinetic energy and the interaction itself: asym =
Quin + @i - Recently, Satula and Wyss presented an

alternative decomposition based on the iso-cranking
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model for nuclear symmetry energy:
HY=H,, —w,T, Ep=¢cT?/2, (2)

where ¢ is the mean level spacing for an equidistant
level model. When an iso-vector potential §/<LT T s

taken into account, the energy will be:
1

By = 2eT? 4 %/@T(T +1), 3)
where £ is the average effective strength of the isovec-
tor potential and the linear part 7T originates from
the Fock exchange term. Hence, the nuclear symme-
try energy can be directly associated with the mean
level spacing and an isovector potential, as shown in
Ref. [3].

The details of RMF theory can be found in a num-

4= and the references therein. The

ber of reviews
potential of RMF theory is described by the mesons,
including an isoscalar scalar sigma (o ), isoscalar vec-
tor omega (w ) and an isovecor vector rho (p). Then
the potential can be separated into an isovector and
isoscalar components: Vi, = ¢,7*7TUpL, Vies =
900 + goY'w, . For the present study we neglect the
Coulomb interaction. By removing the isovector part
of the RMF potential, the mean level spacing € can
be obtained from the binding energies of the isobaric
chain:

Er — BEr_o =~ eT?)2. (4)
Then the effective isovector potential strength x can
be obtained from the binding energy difference be-
tween those with and without the isovector terms in

the RMF calculations for the same nucleus:
Er— Er ~kT?/2 or kT(T+1)/2. (5)

3 Results and discussions

With effective interactions NL3, NLSH, TM1, and
PK1, the binding energies of nuclei in A = 48 iso-
baric chain, from T = 0 to T = 14, are calculated
within the RMF theory. The calculations are not re-
stricted to spherical symmetry. The behaviors of the
mean level spacing e and effective isovecor potential

strength k along isobaric chain are investigated.
3.1 The mean level spacinge

The mean level spacing ¢ for A = 48 isobaric

chain calculated in RMF theory are shown in Fig. 1.

We can see that all results given by the different ef-
fective interactions are very close to each other. ¢
is nearly a constant at large T and after scaled by

m % /m, all curves are within the empirical limits,

which are!:
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Fig. 1. The mean level spacing ¢ (left-hand side) for

A = 48 isobaric chain calculated in RMF theory

with different effective interactions as marked in

the figure. Right-hand side shows the results scaled

by the effective mass m*/m. The shadowed ar-

eas is corresponding the empirical values of € in

Eq. (6).

At small T, there are strong variations ine, e. g.,
T = 4, corresponding to the double magic nucleus
48Ca, which is associated with different shell struc-
ture and hence a large level spacing. The results are
also very similar to those of the SHF calculations in
Ref. [3], except that & toward the lower limit of the

empirical value.
3.2 Effective isovector potential strength «

In Fig. 2, the average strengths of the effective
isovector potential x for the A =48 isobaric chain
calculated in RMF theory are shown. In the left-hand
side, k decreases with T' obviously, while x is nearly
constant in the right panel, i.e., no T -dependence.
Similar conclusion as SHF calculation can be obtained
as: the complex isovector potential can be character-
ized by a single number, &, along an isobaric chain.
One should point out that k still is somewhat de-
creasing in the right-hand panel. Then we can sup-

pose the symmetry energy like:

Eoym =¢eT?/2+ rT(T + )/2. (7)
When x > 1, the average strengths of the effective
isovector potential £ will be more like a constant along
an isobaric chain. Hence we obtain a nuclear symme-

try energy,

Eom=(E+rR)TT+1)/2=0aynT(T+1)/2 (8)
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with a T(T + 1) dependence, which may have good
agreement with experiment data in Ref. [8]. It en-
courages us to calculate more isobaric chains to study

the nuclear symmetry energy further.
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Fig. 2. The average strength of the effective isovec-

tor potential xk for A = 48 isobaric chain. Left-
hand side shows the values of k estimated by
assuming Feym = (¢ + %)T?/2 and right-hand
side shows those estimated by assuming FEsym =
eT?/2+ KT (T +1)/2, as given in Egs. (4) and (5).

4 Summary

The nuclear symmetry energy has been studied in
RMF theory with effective interactions NL3, NLSH,

TM1, and PK1. The mean level spacing ¢ and the
effective isovecor potential strength k are calculated
for the A = 48 isobaric chain and its behavior along
one isobaric chain is investigated.

The mean level spacing, €, is nearly a constant
at large T, while it can be affected by shell structure
at small T'. The effective isovector potential strength
k is almost constant with a T(T'+ 1) dependence in
nuclear symmetry energy. We can say that the isovec-
tor potential can be characterized by a single number,
k , along an isobaric chain. The above conclusions are
similar as those from the SHF calculation. There are
also some differences: 1. the mean level spacing & to-
ward the lower limit of the empirical value after being
scaled by the effective mass. 2. the nuclear symmetry
energy has T(T + z) dependence on k with x > 1,
which can lead to the symmetry energy with T(T+1)

on (e +k),ie, Egym=aymT(T+1)/2.
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