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Abstract Recently it was found that the nuclear symmetry energy can be directly associated with the

mean level density and an iso-vector potential. In this paper, the nuclear symmetry energy is studied within

the relativistic mean field (RMF) theory. The potential of the RMF theory can be separated into an isovector

and isoscalar components. The nuclear binding energies in A = 48 isobaric chain calculated from RMF

theory with or without the isovector terms for effective interactions PK1, NLSH, NL3, and TM1 have been

used to analyze the nuclear symmetry energy in detail, i.e., mean level spacing ε and the effective isovector

potential strength κ .

Key words nuclear symmetry energy, relativistic mean field, iso-cranking, mean level density, isovec-

tor potential

1 Introduction

According to standard textbooks[1], the nuclear

symmetry energy originates from the kinetic energy

and the interaction itself. Recently it was found that

the nuclear symmetry energy can be directly asso-

ciated with the mean level density and an isovec-

tor potential by Satula and Wyss, as demonstrated

in Shyrme-Hartree-Fock (SHF) calculations[2,3]. The

relativistic mean field (RMF) theory has been used

successfully not only for describing the properties of

nuclei near the valley of stability, but also for predict-

ing the properties of exotic nuclei with large neutron

or proton excess[4—7]. Here in this paper, we use the

RMF theory to study the origin of the symmetry en-

ergy with different effective interactions NLSH, NL3,

TM1 and the new developed PK1[5]. The potential

of the RMF theory can be separated into isovector

and isoscalar components. Then the nuclear binding

energies in a given isobaric chain calculated from

RMF with or without the isovector terms is used

to analyze the nuclear symmetry energy in detail.

In Section 2, the theoretical formalism is presented

briefly. The results and discussions are given in the

third section. At last, a brief summary is given.

2 Theoretical formalism

From standard text book[1], we know that the

semi-empirical mass formula contains a term called

the nuclear symmetry energy:

Esym =
1
2
bsym

(N − Z)2

A
=

1
2
asymT 2 (1)

with T = (N − Z)/2 , which is said to originate from

the kinetic energy and the interaction itself: asym =

akin + aint . Recently, Satula and Wyss presented an

alternative decomposition based on the iso-cranking
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model[2] for nuclear symmetry energy:

Ĥw = Ĥsp − ωτ T̂ , ET = εT 2/2, (2)

where ε is the mean level spacing for an equidistant

level model. When an iso-vector potential
1
2
κT̂ · T̂ is

taken into account, the energy will be:

ET =
1
2
εT 2 +

1
2
κT (T + 1), (3)

where κ is the average effective strength of the isovec-

tor potential and the linear part T originates from

the Fock exchange term. Hence, the nuclear symme-

try energy can be directly associated with the mean

level spacing and an isovector potential, as shown in

Ref. [3].

The details of RMF theory can be found in a num-

ber of reviews[4—7] and the references therein. The

potential of RMF theory is described by the mesons,

including an isoscalar scalar sigma ( σ ), isoscalar vec-

tor omega ( ω ) and an isovecor vector rho ( ρ ). Then

the potential can be separated into an isovector and

isoscalar components: Visov = gργ
µτ¤ρµ , Visos =

gσσ + gωγµωµ . For the present study we neglect the

Coulomb interaction. By removing the isovector part

of the RMF potential, the mean level spacing ε can

be obtained from the binding energies of the isobaric

chain:

ẼT − ẼT=0 ≈ εT 2/2. (4)
Then the effective isovector potential strength κ can

be obtained from the binding energy difference be-

tween those with and without the isovector terms in

the RMF calculations for the same nucleus:

ET − ẼT ≈ κT 2/2 or κT (T + 1)/2. (5)

3 Results and discussions

With effective interactions NL3, NLSH, TM1, and

PK1, the binding energies of nuclei in A = 48 iso-

baric chain, from T = 0 to T = 14 , are calculated

within the RMF theory. The calculations are not re-

stricted to spherical symmetry. The behaviors of the

mean level spacing ε and effective isovecor potential

strength κ along isobaric chain are investigated.

3.1 The mean level spacing ε

The mean level spacing ε for A = 48 isobaric

chain calculated in RMF theory are shown in Fig. 1.

We can see that all results given by the different ef-

fective interactions are very close to each other. ε

is nearly a constant at large T and after scaled by

m ∗ /m , all curves are within the empirical limits,

which are[2]:

ε ≈ 53
A

:
66
A

MeV ≈ 1.104 : 1.375MeV(A = 48). (6)
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Fig. 1. The mean level spacing ε (left-hand side) for

A = 48 isobaric chain calculated in RMF theory

with different effective interactions as marked in

the figure. Right-hand side shows the results scaled

by the effective mass m∗/m . The shadowed ar-

eas is corresponding the empirical values of ε in

Eq. (6).

At small T , there are strong variations in ε , e. g.,

T = 4 , corresponding to the double magic nucleus
48Ca , which is associated with different shell struc-

ture and hence a large level spacing. The results are

also very similar to those of the SHF calculations in

Ref. [3], except that ε toward the lower limit of the

empirical value.

3.2 Effective isovector potential strength κ

In Fig. 2, the average strengths of the effective

isovector potential κ for the A = 48 isobaric chain

calculated in RMF theory are shown. In the left-hand

side, κ decreases with T obviously, while κ is nearly

constant in the right panel, i.e., no T -dependence.

Similar conclusion as SHF calculation can be obtained

as: the complex isovector potential can be character-

ized by a single number, κ , along an isobaric chain.

One should point out that κ still is somewhat de-

creasing in the right-hand panel. Then we can sup-

pose the symmetry energy like:

Esym = εT 2/2 + κT (T + x)/2. (7)

When x > 1 , the average strengths of the effective

isovector potential κ will be more like a constant along

an isobaric chain. Hence we obtain a nuclear symme-

try energy,

Esym = (ε + κ)T (T + 1)/2 = asymT (T + 1)/2 (8)
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with a T (T + 1) dependence, which may have good

agreement with experiment data in Ref. [8]. It en-

courages us to calculate more isobaric chains to study

the nuclear symmetry energy further.
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Fig. 2. The average strength of the effective isovec-

tor potential κ for A = 48 isobaric chain. Left-

hand side shows the values of κ estimated by

assuming Esym = (ε + κ)T 2/2 and right-hand

side shows those estimated by assuming Esym =

εT 2/2+κT (T +1)/2 , as given in Eqs. (4) and (5).

4 Summary

The nuclear symmetry energy has been studied in

RMF theory with effective interactions NL3, NLSH,

TM1, and PK1. The mean level spacing ε and the

effective isovecor potential strength κ are calculated

for the A = 48 isobaric chain and its behavior along

one isobaric chain is investigated.

The mean level spacing, ε , is nearly a constant

at large T , while it can be affected by shell structure

at small T . The effective isovector potential strength

κ is almost constant with a T (T + 1) dependence in

nuclear symmetry energy. We can say that the isovec-

tor potential can be characterized by a single number,

κ , along an isobaric chain. The above conclusions are

similar as those from the SHF calculation. There are

also some differences: 1. the mean level spacing ε to-

ward the lower limit of the empirical value after being

scaled by the effective mass. 2. the nuclear symmetry

energy has T (T + x) dependence on κ with x > 1 ,

which can lead to the symmetry energy with T (T +1)

on ( ε + κ ), i.e., Esym = asymT (T + 1)/2 .
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摘要 最新研究发现原子核对称能与平均的能级密度和同位旋矢量势直接相关. 在相对论平均场理

论中, 势场可以分为同位旋矢量和同位旋标量两部分. 采用PK1，NL3, NLSH和TM1相互作用参数,

对于A = 48同质量数链, 分别了计算势场中包含或不含同位旋矢量项时的原子核结合能, 研究了原

子核的对称能, 即平均能级间距 ε和同位旋矢量势的有效强度κ .

关键词 原子核对称能 相对论平均场 同位旋推转 平均能级密度 同位旋矢量势
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