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Abstract The contribution of the resonant continuum to pairing correlations is properly treated in the RMF + BCS approximation with

a constant pairing strength. The results show that the contribution of the proper treatment of the resonant continuum to pairing correla-

tions for those nuclei close to neutron drip line is important. The quasiparticle relativistic random phase approximation is applied to

investigate the collective excitations of the open shell nucleus. The numerical calculations are performed in the case of various

isoscalar giant resonances of nucleus '®Sn. The calculated results show that the quasiparticle relativistic random phase approximation

approach could satisfactorily reproduce the experimental data of the energies of low-lying states.
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1 Introduction

Currently there is, in nuclear physics community, a
strong interest in the study of exotic nuclei both experimental -
ly and theoretically. Due to the closeness of the Fermi surface
to the particle continuum in exotic nuclei, the description of
exotic nuclei in both relativistic and non-relativistic micro-

=5 must explicitly take into account the effect

scopic methods
of the continuum. A key ingredient of those models is how to
propetly treat the pairing correlations, which have an impor-
tant influence on physical properties in exotic nuclei. In gen-
eral, the pairing correlations in open shell nucleus can be
treated by the BCS theory or through the Bogoliubov transfor-
mation. The main feature of the Bogoliubov transformation,

compared with the simple BCS theory, is that the Hartree-

Fock equation or Dirac equation and the gap equations are
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solved simultaneously with self-consistent fields. Both of them
could give a good description of the pairing correlation if the
nucleus is not too far from the §-stable line!®! . The simple
BCS method may not be reliable near the drip line because
the continuous states were not correctly treated ") . The con-
tribution of the coupling to the continuum would be prominent
when the nucleus close to the drip line, therefore a proper
treatment of the continuum becomes more important[s’gj .In
this paper, we aim at the investigation of the effect of resonant
continuum on the pairing correlations of neutron-rich nucleus
in the relativistic mean field theory plus BCS(RMF + BCS)
approximation, especially in the width effect of single particle
resonant states on the pairing correlation. A constant pairing
strength is employed in the BCS calculations as usually
did"®!, The proper treatment of the continuum is performed by

using the single particle resonant states instead of the dis-
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cretized continuum, which is expected to give a good descrip-
tion on the ground state properties of neutron rich nucleus,
even within the BCS approximation. The single particle reso-
nance states are calculated by imposing a proper scattering
boundary condition for the continuous spectrum. To investigate
the width effect of single particle resonant states on pairing
correlations, we study the results in the RMF + BCS approach
with and without taking account of the widths of the reso-
nances, which are abbreviatory as RMF + BCSRW and RMF
+ BCSR, respectively. The results are also compared with
those given by the traditional RMF + BCS approach with dis-
cretized single particle states in the continuum.

It is well known that the pairing correlations play an im-
portant role in describing the ground state properties of open

U—=5.11] Iy order to describe the glant multipole

shell nuclei
resonances of open shell nuclei the pairing correlations have
to be taken into account. Recently, a number of theoretical
works have been devoted to study the properties of collective
excitations of open shell nuclei in the framework of the quasi-

12—15

particle random phase approximation( QRPA)[ ! . Very re-

U6) have formulated the quasiparticle rela-

cently, Paar et al.
tivistic random phase approximation( QRRPA )in the configu-
ration space formalism. The motivation of the present work is

to extent the fully self-consistent RRPAL7—2]

approach to
take into account the effect of pairing correlations in studying
the giant multipole resonances of open shell nuclei in the re-
sponse function formalism. The BCS approximation is em-
ployed in open shell nuclei in order to describe the pairing
correlations in calculations of the ground state properties and
collective states. The empirical pairing gaps deduced from the
experimental binding energies of neighbouring nuclei are
adopted in the BCS calculations. The numerical calculations
are performed in the case of various isoscalar giant resonances
including isoscalar giant monopole resonance(ISGMR) , giant
quadrupole resonance (ISGQR) and giant octupole resonance
(ISGOR) of nucleus ®Sn.

2 Effect of the resonant continuum on the
pairing correlation

In most previous theoretical nuclear structure calcula-
tions, single particle states in the continuum are treated in a
discretization procedure by expanding wave functions in a set
of harmonic oscillator basis or setting a box. This approxima-

tion, however, can be justified for very narrow resonances and

gives a global description of the contributions from the contin-
uum. In this work we introduce single particle resonant states
into the pairing gap functions instead of the discretized con-
tinuous states and aim to investigate the width effect of reso-
nances on pairing correlations . The S-matrix method is used to
single out the single particle resonant states' "2 . The wave
functions of resonant states are obtained by imposing a proper
scattering boundary condition. At the distance R where the
nuclear potentials vanish, the upper component of the neutron
radial wave function has the following asymprotic behaviour:
G,(kr) = A,[jlv( kr) — tan&,nly( k)], for r=R,(1)
where j, and n; are spherical Bessel and Neumann functions,
respectively, and 8, is the corresponding phase shift. For the
case of proton, the asymptotic behaviour can be obtained by
replacing the spherical Bessel and Neumann functions in Eq.
(1) with the relativistic regular and irregular Coulomb wave

(231 respectively. The energy of a resonant state is

functions
determined when the phase shift of the scattering state reaches
7/2 . The wave function of scattering state is normalized to a
delta function of energy §(E — E')

Taking account of the widths of single particle resonant

states, the gap equations[24]can be expressed as:

Z(j”%)m* Z(j»‘“%)x

Jpe) e = G @
Sliep)1- =]

i+ 3] g =

v

[1-—2=% 4, - n, (3)

V (e, = A)? + A?

where A, A,and G represent the Fermi energy, pairing gap,
and the pairing force constant, respectively. The NV is the
number of neutrons or protons involved in the pairing correla-
tions. The sums a and v run over the bound states and reso-
nant states involved in the pairing calculation, respectively,
and I, is an energy interval associated with each partial wave
(1,,7,) .The factor g, is defined as:
1ds,

w de,’

g(e)= (4)

which is the level density of the resonant state. &, is the
corresponding phase shift of the scattering state with angular
momentum v = (1, ,)

The single particle energies and wave functions are first
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carried out by solving the Dirac equation self-consistently . Us-
ing those single particle states we can solve the BCS gap e-
quations . The Fermi energy and pairing gap as well as the oc-
cupation probabilities of quasi-particle states are obtained si-
multaneously. Therefore the nuclear densities composed of
quasi-particle states and potentials can be calculated. Then
we solve Dirac equation again by an iterative way until the
convergence is reached.

In the framework of the RMF + BCS we investigate the
ground state property of the nucleus ¥Ni, which is far from the
{3-stability line. In particular we shall focus our attention on
the effect of single particle resonant states on the pairing cor-
relation in this neutron-rich nucleus. The calculations are car-
ried out in the RMF with the parameter set NL3!%! . Three
types of calculations: RMF + BCSRW, RMF + BCSR and tra-
ditional RMF + BCS are performed. The nucleus *Ni has the
proton number Z =28, which is a closed shell. Therefore, the
proton pairing gap is taken to be zero. For the neutron pair-
ing, we use a state-independent pairing strength G = C/A,
where the constant C =20.5MeV!'%) . In the practical calcu-
lations , we restrict the pairing space to one harmonic oscillator
shell above and below the Fermi surface in the RMF + BCS
model. The low-lying quasi-particle resonant states 1g7,, and
1k, in nucleus ¥Ni are included in the extended RMF +
BCS calculations, whereas the highly excited resonant states
with large widths are ignored in our calculations. In Table 1
we list the restlts of the neutron pairing gap A, the Fermi
energy A,, nenutron rms radius r,, the pairing correlation
energy K, and the tolal binding energy FKj at the ground
states of ¥ Ni calculated with excluding and including the
widths effect of resonant states in the extended RMF + BCS,
and the corresponding results obtained in traditional RMF +
BCS approximation are also given.

In comparison of the results in the case of including and
excluding the widths of the single particle resonances, we find
that the inclusion of the width largely reduces the pairing
correlation. The pairing gap and the Fermi energy are obtained
from A, =1.620MeV to 1.339MeV and from A, = — 1.905MeV
to — 1.835MeV, respectively. The pairing energy is reduced
from E, = - 10.758MeV to - 7.357MeV. On the other
hand, it shows that the traditional RMF + BCS approach pro-
duces the largest pairing gap and pairing correlation energy
due to the fact that some non-resonant scattering states in the
continuum, such as the discrete states 3p;and 3p, ,states,

which are not resonance states due to the low centrifugal bar-

rier, are included in the traditional RMF + BCS calculation.

Therefore the traditional RMF + BCS approach overestimates

the pairing correlations and produce large pairing energies and

pairing gaps.
Table 1. The neutron pairing gap A, ,the Fermi energy

Ay neutron rms radius r,,, the pairing correlation energy E ,
and the total binding energy E,, at the ground states of
8Ni calculated with excluding and including the widths
effect of resonant states in the extended RMF + BCS,

and traditional RMF + BCS approaches.

RMF + BCSRW  RMF + BCSR RMF + BCS
A/ MeV 1.399 1.620 1.773
A/ MeV -1.835 -1.905 -1.958
r./fm 4.609 4.615 4.672
E,/MeV -7.357 -10.758 —-12.888
E,/MeV 654.472 655.678 656.092

We plot the neutron densities for Ni in Fig.1.1t is ob-
served that the tail of the density distribution gets larger when
the pairing correlation is considered. The width effect on the
density distribution is very small, therefore it does not change
the neutron rms radius listed in Table 1. In the traditional
RMF + BCS approximation, the unphysical particle gas may
appear when the size of the box becomes larger. The non-res-
onant discretized states in the continuum are included in pair-
ing correlation calculations, such as 3p;,, and 3py, states.
Their wave functions have a long tail depending on the box

size adopted in the calculations. It is found that this problem

T T T ¥ T T
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Fig. 1. Neutron density distribution for ¥Ni calculated in the

RMF, RMF + BCS, RMF + BCSR, and RMF + BCSRW app-
roaches, where the RMF + BCS results calculated with various
values of the box size Ry, =15,20,25fm are also plotted.
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is well overcome when one performs the calculations of the
pairing correlation with a few narrow resonant states instead of

those discretized states in the continuum.

3 Isoscalar giant resonances of ®Sn in the
QRRPA

In this part, we will investigate the isoscalar giant multi-
pole resonances of open shell uncleus " Sn, the method we
employed is the QRRPA which is an extended version of self-
consistent RRPA by taking into account the effect of pairing

correlations.
[26—28]

In the RRPA calculation, early investiga-
tions were based on Walecka’s linear 6-w models, which
provides considerably larger ineompressibilitymg] . Therefore,
one could not expect to obtain quantitative agreement with ex-
perimental data in those early calculations. Recently the me-
son propagators with non-linear self-interactions have been
worked out numerically and the RRPA calculations with the
non-linear terms were performed[w] .A fully consistent RRPA
has been established in the sense that the RMF wave function
of nucleus and particle-hole residual interactions in the RRPA
are calculated from a same effective Lagrangian[”_zo] . A con-
sistent treatment of RRPA within the RMF approximation re-
quires the configurations including not only the pairs formed
from the occupied Fermi states and unoccupied states but also
the pairs formed from the Dirac states and occupied Fermi
states. It has been formally pmved[lg]that the fully consistent
RRPA is equivalent to the time dependent RMF(TDRMF) at
the small amplitude limit'*"! . The ISGMR, ISGQR and IVGDR
Wgm, sy, X7y

were performed with different effective Lagrangian parameter

for some stable nuclei, such as ®Pb,

sets and a good agreement with experimental data is ob-
tained 2’ .

The response function of a quantum system to an exter-
nal field is given by the imaginary part of the polarization op-

erator:
R(Q,Q:k, k'3 E) = - Iml"(Q, Q3 k, k' E), (5)

where ( is an external field operator. The RRPA polarization
operator is obtained by solving the Bethe-Salpeter equation:

I(Q,Q;k; k' ;E) =
O,(Q,Qsk, k' E) - Zg%jd%ld%zﬂo x
[(Q’r‘i;k9k19E)Di(k19k29E)X
H(Fi’Q;kz’k,9E>]9 (6)

In the relativistic approach, the residual particle-hole in-

teractions are generated by exchanging various mesons. There-
fore,in Eq.(6) the sum i runs over 5, w and ¢ mesons with
g; and D, being the corresponding coupling constants and me-
son propagators, I'; =1 for 6 meson and I'; = »*, ¥*7r3forw
and p mesons, respectively, The meson propagators for non-
linear models are non-local in momentum space, and there-
fore have to be calculated numerically. The detailed expres-
sions for D,(k,, k,, E)can be found in Ref.[30].II, is the
unperturbed polarization operator. The standard expression for
unperturbed polarization operator can be obtained in Refs.
[17,18].

The pairing correlations are treated in the Bardeen-
Cooper-Schrieffer( BCS) approximation in this work. When the
pairing correlations are taken into account, the elementary ex-
citation is a two-quasiparticle excitation, rather than a parti-
cle-hole excitation. The unperturbed polarization operator in
the QRRPA in the response function formalism can be con-
structed in a similar way to the RRPAMS!,

n8(P,Qsk, k' ;E) = ;gi{Z(_ 1)/t A g x
B

[<¢ | Pl $2¢2sll Qull 800
E-(E, + Eg) + iy

(P ll oIl #,0{¢, |QL|¢B>]
E+(E, + Epy) +1in

S 1)y [<¢ FAECATAES

> -(E, + A -¢) +1iy

CAVAERCANN w”, (M)

E+(E, +X-¢)+iy

with
A= (ugvg+ (= Dy ug)*(1+ 8) 71, (8)
where v? is the BCS occupation probability and u2 =1 - y2-

=/ (e, — 1,)*+ A? is the quasiparticle energy, where

A, and A, are the neutron Fermi energy and pairing correla-
tions gap, respectively. In Eq. (7), the first term represents
the excitations with one quasiparticle in positive energy fully
or partial occupied states and one quasiparticle in the partial
occupied or unoccupied states. The last term describes the
excitations between positive energy fully or partial occupied
states and negative energy states in Dirac sea. For unoccupied
positive energy states outside the pairing active space, their
energies are Fg= ez — A,,occupation probabilities vfg =0 and

u% = 1. For fully occupied positive energy states, the
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quasiparticle energies and occupation probabilities are set as
E,=A,—¢,and v* =1 in Eq.(7), respectively. The states in
Dirac sea are not involved in the pairing correlations, therefore
the quantities v% and ué are set to be 0 and 1, respectively.
In this study we apply the QRRPA to nucleus ' Sn
which is a typical open shell nucleus and is known to be of
spherical shapem] . The ground state properties of the nucleus
208n are calculated in the RMF + BCS with the parameter set
NI3.The proton pairing gap is set to be zero due to the magic
number Z =50. A constant neutron pairing gap is adopted in
the calculation of neutron pairing correlations. which is ob-
tained from the experimental binding energies of neighbouring

nuclei by the formulae:
A= 1 B(Z,N-2)~4B(Z,N~1) +6B(Z,N) -

4B(Z,N+1)+B(Z,N+2)], 9

In our calculations, the neutron pairing active space in

the nucleus ®Sn includes states up to the N = 82 major shell
and the states of 1g7,2,2ds5,2d3,9,3510,and 1hy,,. The
neutron pairing gap A, is 1.392MeV given by Eq. (9) . The
calculated neutron Fermi energy A, is — 7.842MeV . The cal-
culated binding energy of the nucleus "®Sn is 1022.584MeV .
Compared to the experimental binding energy 1020.544
MeVi®!, the values predicted by the theoretical approach and
by the experimental result are in good agreement . Neutron sin-
gle particle energies and BCS occupation probabilities for those

states close to neutron Fermi energy are shown in Table 2.

Table 2.
probabilities v2 of levels close to the neutron

Neutron single-particle energy &, and occupation

120g,

Fermi energy in n.
level e,/ MeV vi
lg1n -11.423 0. 966
2ds, -10.063 0.923
2d3 -8.279 0.649
351, -7.92% 0.530
Lhnn -7.062 0.256

We now study the isoscalar giant multipole resonances of
1208 by the QRRPA approach, and the effect of pairing corre-
lations on the giant multipole resonance is also discussed. The
isoscalar operator is Q = ¥°r"Yiy, except Q = Y°r*Yy, for
the ISGMR mode. In the QRRPA the quasiparticle-hole resid-
val interactions are taken from the same effective interaction
NIL3 which is used in the description of the ground states of

120G, The occupied states and states in the pairing active

space are calculated self-consistently in the RMF + BCS ap-
proach in the coordinate space. The unoccupied states outside
the pairing active space are obtained by solving the Dirac
equation in the expansion on a set of harmonic oscillation
bases . The response functions of the nuclear system to the ex-
ternal operator are calculated at the limit of zero momentum
transfer. It is also necessary to include the space-like parts of
vector mesons in the QRRPA calculations, although they do

1 The consistent treat-

not play any role in the ground state
ment guarantees the conservation of the vector current.

In Fig.2 we show, as an example, the response functions
for the ISGQR modes of ®Sn calculated by the RRPA and
QRRPA approaches to illustrate the importance of including
the effect of pairing correlations in the calculations of multi-
pole collective excitations for open shell nuclei. It can be seen
that the inclusion of pairing correlations has a strong effect on
the low-lying states, while the effect on higher energy region is
weak. A similar result has been obtained by Hagino in the

framework of HF + BCS + QRPAS]

S —
T
>
L
>
£
—
Z
= i
0 5 10 15 20 25 30
E/MeV
Fig. 2. Response function for the isoscalar giant quadrupole

resonance( ISGQR) mode calculated by the RRPA ( dashed line)

and the QRRPA (solid line) , respectively. The arrows indicate

the position of low-lying 2* states obtained by the( Q) RRPA
approach.

In Table 3 we list the low-lying 0¥ ,2% and 3~ states
calculated by the RRPA and QRRPA approaches, respective-
ly. The third line in Table 3 is the corresponding experimental
data taken from Refs.[15,34].Tt can be seen that the RRPA
approach can not produce the low-lying 0* state, while the in-
clusion of pairing correlations can reproduce the experimental
data of the low-lying 0* state reasonably. The low-lying 2*
state is located at 6. 11MeV given by the RRPA approach,
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which is much larger than the corresponding experimental da-
ta of 1.17MeV , the low-lying 2 state obtained in the QRRPA
approach is located at 1.39MeV which is in a good agreement
with the experimental data. For the ISGOR mode listed in
Table 3, the experimental value of the low-lying 3~ state is at
2.40MeV, while the RRPA and QRRPA give 1.06 MeV and
2.94 MeV, respectively. It is shown that the RRPA without
pairing correlations underestimates the low-lying 3~ state and
the QRRPA is more satisfactory compared with the experimen-
tal result.
Table 3. The low-lying 0+ ,2* and 3~ state in ®Sn calculated
by the RRPA and QRRPA approaches, respectively. The third
line represents the corresponding experimental results!'>!,

Eqy* /MeV E,* /MeV E;™ /MeV
RRPA 6.11 1.06
QRRPA 2.55 1.39 2.94
Expt. 1.87 1.17 2.40

4 A brief summary

In a summary, we have investigated the pairing correla-
tion for neutron-rich nucleus in the RMF + BCS approximation
with a constant pairing strength. A proper treatment of the
resonant state in the continuum on pairing correlations has to
include not only its energy, but also its width. The resonant
continuum is solved by imposing a proper scattering boundary

condition. By introducing a level density in the continuum into

the pairing gap equations, we include the effect of width of the
resonant state in the pairing correlation calculations. The in-
vestigation is performed in three approaches: RMF + BCSRW,
RMF + BCSR and traditional RMF + BCS with effective La-
grangian parameter set NL3. The results show that the contri-
bution of the resonant continuum treated properly to pairing
correlations is important for nucleus far from the B-stability
line. It is found that the width effect on the pairing is to re-
duce the pairing correlations. The unphysical particle gas ap-
peared in the traditional mean field plus BCS calculation in
the vicinity of drip line can be well overcome when one per-
forms the pairing correlation calculations using several reso-
nant states instead of the discretized states in the continuum.

We have formulated the quasiparticle relativistic random
phase approximation( QRRPA) model in the response function
formalism. The pairing correlations are taken into account in
the BCS approximation with a constant pairing gap exiracted
from the experimental binding energies of neighbouring
nuclei. We apply the QRRPA to calculate giant multipole res-
onances of the nucleus Sn in the case of various isoscalar
modes including ISGMR, ISGQR and ISGOR. It is shown that
the inclusion of pairing correlations has a strong effect on the
calculation of multipole collective excitations of open shell
nuclei. We found that the QRRPA approach could satisfacto-
rily reproduce the experimental data of the energies of low-ly-
ing states, while the giant resonance is not much affected by

taking into account the effect of pairing correlations.
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