相对论平均场框架下偶偶核与奇偶核 计算误差的系统研究^{*}

丁斌刚^{1,2;1)} 鲁定辉²

1 (浙江湖州师范学院理学院 湖州 313000) 2 (浙江大学近代物理中心 杭州 310027)

摘要 在相对论平均场理论框架下,用NL-3和NL-Z两组相互作用参数研究了4个同位素链²⁸Ni,⁵⁴Xe, ⁷⁸Pt,⁹⁴Pu的基态性质.发现,在Hatree近似下奇A核结合能理论计算值与实验值的相对误差反而普遍 比偶偶核小.这说明用相对论平均场理论,即使不考虑矢量介子的空间分量,仍可以比较可靠地计算奇 A核结合能.

关键词 相对论平均场 结合能 偶偶核 奇 A 核

1 引言

与传统的非相对论核物质理论比较,相对论平均 场理论(RMF)引入了介子自由度,用介子场的交换代 替了非相对论理论中的二体相互作用,自然给出了粒 子自旋和轨道的耦合,因而有比较坚实的理论基础. 它在处理β稳定线附近甚至远离稳定线的偶偶核中, 已取得了很大的成功^[1-5].在实际计算中,人们往往 采取Hartree 近似, 即忽略矢量介子 ω_{μ} , ρ_{μ} 和 A_{μ} 的空 间分量, 而仅保留其时间分量. 但是对于奇A核, 由于 其不满足时间反演不变对称性,从理论自洽的角度讲, 是不能采用Hartree近似的. 近年来, 许多学者认为对 于奇A核,若只求解结合能、形变系数、均方半径等 物理量而不涉及极化流、磁矩等问题时,采用Hartree 近似的RMF仍是一个很好的近似^[6—9].更有文献用 RMF理论处理奇质子的同位素链^[10, 11],同样给出了 可以接受的结果.但是,迄今为止,还没有人从理论上 明确地指出用RMF处理奇A核时由于不满足Hartree 近似条件而将带来多大误差(Hofmann和Ring^[12]只是 指出在计算磁矩时必须考虑矢量介子场的空间分量), 也没有人系统地比较过计算奇A核时究竟会有多大的 近似. 本文的目的, 是用NL-3^[13]和NL-Z^[14]两组相互

作用参数系统地计算 Ni, Xe, Pt, Pu 4个同位素链(它 们的电荷数 Z基本覆盖了整个核素表)的结合能,电 荷半径,并和实验值比较并分析,以期得出 RMF 理论 计算偶偶核和奇 A 核结合能可靠性的定量的结论.

2 理论模式

这里仅给出RMF理论的大致框架,详细的理论 背景请看Y.K. Gambhir等人的文章^[15].本文采用有 非线性自耦合标量场的拉氏密度

$$L = \overline{\psi}(i\gamma^{\mu}\partial_{\mu} - M)\psi + \frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{3}g_{2}\sigma^{3} - \frac{1}{4}g_{3}\sigma^{4} - \frac{1}{4}\Omega_{\mu\nu}\Omega^{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega^{\mu}\omega_{\mu} - \frac{1}{4}R_{\mu\nu}\cdot R^{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\rho_{\mu}\cdot\rho^{\mu} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} + g_{\sigma}\overline{\psi}\sigma\psi - g_{\omega}\overline{\psi}\gamma^{\mu}\omega_{\mu}\psi - g_{\rho}\overline{\psi}\gamma^{\mu}\tau\cdot\rho_{\mu}\psi - e\overline{\psi}\gamma^{\mu}A_{\mu}\frac{1-\tau_{3}}{2}\psi, \qquad (1)$$

其中 ψ 和M代表核子场和核子质量,介子场分别为 σ , ω 和 ρ ,相应的质量和耦合常数分别是 $m_{\sigma}, m_{\omega}, m_{\rho}$ 和 $g_{\sigma}, g_{\omega}, g_{\rho}$.而 g_{2}, g_{3} 是 σ 介子的非线性自耦合常数, A^{μ}

38 - 43

^{2005 - 04 - 28} 收稿

^{*}国家自然科学基金(10475026, 10235030,10175052)资助

¹⁾ E-mail: dingbingang@163.com

代表光子场, τ 是核子同位旋算符, τ_3 是其第3分量.

矢量介子场张量 **Ω**^{µν}, **R**^{µν} 和电磁场张量 A^{µν} 取 如下形式:

$$\begin{aligned} \boldsymbol{\Omega}^{\mu\nu} &= \partial^{\mu} \, \omega^{\nu} - \partial^{\nu} \, \omega^{\mu} \,, \\ \boldsymbol{R}^{\mu\nu} &= \partial^{\mu} \, \boldsymbol{\rho}^{\nu} - \partial^{\nu} \, \boldsymbol{\rho}^{\mu} - g_{\rho}(\boldsymbol{\rho}^{\mu} \times \boldsymbol{\rho}^{\nu}) \,, \\ F^{\mu\nu} &= \partial^{\mu} \, A^{\nu} - \partial^{\nu} \, A^{\mu} \,, \end{aligned}$$
(2)

由欧拉--拉格朗日方程,可分别得到核子场、介 子场和电磁场满足的场方程

$$\{ \boldsymbol{\alpha} \cdot (-\mathrm{i} \nabla - \boldsymbol{V}(\boldsymbol{r})) + \beta M^{*}(\boldsymbol{r}) + V(\boldsymbol{r}) \} \psi_{i}(\boldsymbol{r}) = \varepsilon_{i} \psi_{i}(\boldsymbol{r}),$$

$$\{ -\Delta + m_{\sigma}^{2} \} \sigma(\boldsymbol{r}) = -g_{\sigma} \rho_{s}(\boldsymbol{r}) - g_{2} \sigma^{2}(\boldsymbol{r}) - g_{3} \sigma^{3}(\boldsymbol{r}),$$

$$\{ -\Delta + m_{\omega}^{2} \} \omega^{\mu}(\boldsymbol{r}) = g_{\omega} j^{\mu}(\boldsymbol{r}),$$

$$\{ -\Delta + m_{\rho}^{2} \} \boldsymbol{\rho}^{\mu}(\boldsymbol{r}) = g_{\rho} \boldsymbol{j}^{\mu}(\boldsymbol{r}),$$

$$-\Delta A^{\mu}(\boldsymbol{r}) = e j_{\mathrm{em}}^{\mu}(\boldsymbol{r}),$$

$$(3)$$

其中

$$M^{*}(\mathbf{r}) = M + g_{\sigma}\sigma(\mathbf{r}),$$

$$V(\mathbf{r}) = g_{\omega}\omega^{0}(\mathbf{r}) + g_{\rho}\boldsymbol{\tau}\cdot\boldsymbol{\rho}^{0}(\mathbf{r}) +$$

$$e(1 - \tau_{3})A^{0}(\mathbf{r})/2,$$

$$V^{i}(\mathbf{r}) = g_{\omega}\omega^{i}(\mathbf{r}) + g_{\rho}\boldsymbol{\tau}\cdot\boldsymbol{\rho}^{i}(\mathbf{r}) + e(1 - \tau_{3})A^{i}(\mathbf{r})/2,$$
(4)

 $\rho_{\rm s}, j^{\mu}, j^{\mu}, j^{\mu}_{\rm em}$ 表示核子场的标量密度, 矢量密度, 同 位旋矢量密度与电磁流密度.

相应的哈密顿密度算符

$$H(\mathbf{r}) = \sum_{i} \psi_{i}^{+} \{ \boldsymbol{\alpha} \cdot [-i\nabla - \boldsymbol{V}(\mathbf{r})] + \beta M^{*}(\mathbf{r}) + V(\mathbf{r}) \} \psi_{i} + \frac{1}{2} (\nabla \sigma)^{2} + U(\sigma) - \frac{1}{2} [(\nabla \omega_{0})^{2} + m_{\omega}^{2} \omega_{0}^{2} - (\nabla \times \boldsymbol{\omega})^{2} - m_{\omega}^{2} \omega^{2}] - \frac{1}{2} [(\nabla \rho_{0})^{2} + m_{\rho}^{2} (\boldsymbol{\rho}_{0})^{2} - (\nabla \times \boldsymbol{\rho})^{2} - m_{\rho}^{2} \boldsymbol{\rho}^{2}] - \frac{1}{2} [(\nabla A_{0})^{2} - (\nabla \times \boldsymbol{A})^{2}], \qquad (5)$$

体系总能量为

$$E = \int H(\boldsymbol{r}) \mathrm{d}^3 r \,. \tag{6}$$

在Hartree近似下,即忽略矢量介子场和电磁场 的空间分量而只保留其时间分量,核子场、介子场和 电磁场的场方程变成

$$\left\{ -\mathrm{i}\,\boldsymbol{\alpha}\cdot\nabla + \beta M^{*}(\boldsymbol{r}) + V(\boldsymbol{r}) \right\} \psi_{i}(\boldsymbol{r}) = \varepsilon_{i}\psi_{i}(\boldsymbol{r}),$$

$$\left\{ -\Delta + m_{\sigma}^{2} \right\} \sigma(\boldsymbol{r}) = -g_{\sigma}\rho_{s}(\boldsymbol{r}) - g_{2}\sigma^{2}(\boldsymbol{r}) - g_{3}\sigma^{3}(\boldsymbol{r}),$$

$$\left\{ -\Delta + m_{\omega}^{2} \right\} \omega^{0}(\boldsymbol{r}) = g_{\omega}j^{0}(\boldsymbol{r}),$$

$$\left\{ -\Delta + m_{\rho}^{2} \right\} \boldsymbol{\rho}^{0}(\boldsymbol{r}) = g_{\rho}\boldsymbol{j}^{0}(\boldsymbol{r}),$$

$$-\Delta A^{0}(\boldsymbol{r}) = ej_{\mathrm{em}}^{\mu}(\boldsymbol{r}),$$

$$(7)$$

此时的哈密顿密度算符为

$$H_{0}(\boldsymbol{r}) = \sum_{i} \psi_{i}^{+} \left\{ \boldsymbol{\alpha} \cdot (-\mathrm{i}\nabla) + \beta M^{*}(\boldsymbol{r}) + V(\boldsymbol{r}) \right\} \psi_{i} + \frac{1}{2} (\nabla\sigma)^{2} + U(\sigma) - \frac{1}{2} [(\nabla\omega_{0})^{2} + m_{\omega}^{2}\omega_{0}^{2} - m_{\omega}^{2}\omega^{2}] - \frac{1}{2} [(\nabla\boldsymbol{\rho}_{0})^{2} + m_{\rho}^{2}(\boldsymbol{\rho}_{0})^{2}] - \frac{1}{2} (\nabla A_{0})^{2} ,$$
(8)

总能量为

$$E_0 = \int H_0(\boldsymbol{r}) \mathrm{d}^3 r \,. \tag{9}$$

所以,由Hartree近似引起的总能量改变是

$$\Delta E = E - E_0 = \int d^3r \left\{ \sum_i \psi_i^+ \boldsymbol{\alpha} \cdot \boldsymbol{V} \psi_i - (\nabla \times \boldsymbol{\omega})^2 + \frac{1}{2} [(\nabla \times \boldsymbol{\rho})^2 + m_{\rho}^2 \boldsymbol{\rho}^2] + \frac{1}{2} (\nabla \times \boldsymbol{A})^2 \right\}.$$
(10)

3 理论计算

在用RMF具体计算中, 假定原子核有轴对称形变, 对微分方程的求解在柱坐标系中采用谐振子基展 开方法进行. 计算中对于费米子波函数选用12个谐振 子壳层, 对玻色子波函数则选用20个谐振子壳层. 谐 振子参数取 $b_0 = 41A^{-1/3}$. 对能隙参数采用经验公式

$$\Delta = 11.2/\sqrt{A}.\tag{11}$$

为了方便计算,对于同一个同位素链,固定一个 Δ ,其中核子数A用相应同位素链的平均值.如Ni同 位素链,计算范围为A=54到A=71,则A的平均数 为62.5.将此值代入(11)式,得到 Δ =1.4.这种处理尽 管有些粗糙,由于结合能在该平均能隙附近变化不大, 所以这样处理不会改变本文结论.初始形变参数按有 限力程液滴模型取值^[16].

为了使计算结果较有代表性,在整个核素表上按 电荷数 Z 大致等间隔的原则任意选择4个 Z 为偶数的 同位素链²⁸Ni, ⁵⁴Xe, ⁷⁸Pt, ⁹⁴Pu(由于 Z > 96以后的 同位素,结合能有实验值的元素个数较少,故只取到 ⁹⁴Pu).为了避免相互作用参数选定的偶然性,选取了 差别比较大的二组相互作用参数NL-3和NL-Z进行计 算(用更多组参数对更多的同位素链进行分析会更有 说服力).

理论计算的同位素链²⁸Ni, ⁵⁴Xe, ⁷⁸Pt, ⁹⁴Pu上 各原子核的结合能与相应实验值^[17]的比较见表1, 2, 3, 4.

表 1 用NL-3, NL-Z参数组计算Ni同位素的每核子结合能

Ni		NL-3		NL-Z		Ni		NL-3		NL-Z	
Α	$E_{\rm exp}/{\rm keV}$	$E_{\rm th}/{\rm keV}$	$\Delta E/{\rm keV}$	$E_{\rm th}/{\rm keV}$	$\Delta E/{\rm keV}$	A	$E_{\rm exp}/{\rm keV}$	$E_{\rm th}/{\rm keV}$	$\Delta E/{\rm keV}$	$E_{\rm th}/{\rm keV}$	$\Delta E/{\rm keV}$
54	8392	8351	41	7493	899	55	8497	8496	1	7618	879
56	8459	8618	159	7724	735	57	8671	8657	14	7775	896
58	8732	8669	63	7803	929	59	8737	8678	59	7825	912
60	8781	8688	93	7845	936	61	8765	8716	49	7891	874
62	8795	8725	70	7906	889	63	8763	8725	38	7908	855
64	8777	8722	55	7905	872	65	8736	8720	16	7904	832
66	8740	8716	24	7901	839	67	8696	8710	14	7901	795
68	8682	8694	12	7888	794	69	8623	8662	39	7853	770
70	8603	8619	16	7805	798	71	8540	8573	33	7753	787
偶偶核偏差之和		533			7691		核偏差之和	263			7600

表 2 用NL-3, NL-Z参数组计算 Xe 同位素的每核子结合能

Xe		NL-3		NL-Z		Xe		NL-3		NL-Z	
Α	$E_{\rm exp}/{\rm keV}$	$E_{\rm th}/{\rm keV}$	$\Delta E/{\rm keV}$	$E_{\rm th}/{\rm keV}$	$\Delta E/{\rm keV}$	Α	$E_{\rm exp}/{\rm keV}$	$E_{\rm th}/{\rm keV}$	$\Delta E/{\rm keV}$	$E_{\rm th}/{\rm keV}$	$\Delta E/{\rm keV}$
112	8230	8211	19	7375	855	113	8247	8239	8	7400	847
114	8289	8266	23	7425	864	115	8300	8292	8	7446	854
116	8337	8315	22	7466	871	117	8344	8335	9	7485	859
118	8375	8353	22	7504	871	119	8378	8369	9	7522	856
120	8404	8382	22	7537	867	121	8404	8394	10	7551	853
122	8425	8403	22	7560	865	123	8421	8410	11	7564	857
124	8438	8416	22	7563	875	125	8431	8422	9	7562	869
126	8444	8426	18	7572	872	127	8434	8429	5	7575	859
128	8443	8430	13	7576	867	129	8431	8430	1	7576	856
130	8438	8428	10	7573	865	131	8434	8428	6	7571	853
132	8428	8425	3	7566	862	133	8413	8422	9	7559	854
134	8414	8419	5	7551	863	135	8399	8417	18	7543	856
136	8396	8410	14	7533	863	137	8364	8382	18	7508	856
138	8346	8344	2	7476	870	139	8312	8309	3	7451	861
140	8291	8266	25	7427	864	141	8256	8257	1	7402	854
偶偶核偏差之和			242		12994	奇A	核偏差之和	125			12844

表 3 用NL-3, NL-Z参数组计算 Pt 同位素的每核子结合能

Pt		NL-3		NL-Z		Pt		NL-3		NL-Z	
A	$E_{\rm exp}/{\rm keV}$	$E_{\rm th}/{\rm keV}$	$\Delta E/{\rm keV}$	$E_{\rm th}/{\rm keV}$	$\Delta E/{\rm keV}$	Α	$E_{\rm exp}/{\rm keV}$	$E_{\rm th}/{\rm keV}$	$\Delta E/{\rm keV}$	$E_{\rm th}/{\rm keV}$	$\Delta E/{\rm keV}$
168	7774	7786	12	6933	841	169	7783	7802	19	6952	831
170	7808	7816	8	6967	841	171	7817	7827	10	6980	837
172	7839	7837	2	6993	846	173	7845	7848	3	7004	841
174	7866	7857	9	7013	853	175	7869	7867	2	7022	847
176	7889	7878	11	7029	860	177	7893	7902	9	7036	857
178	7903	7913	10	7041	867	179	7911	7923	12	7047	864
180	7934	7932	2	7065	859	181	7924	7940	16	7070	854
182	7935	7946	11	7074	861	183	7933	7950	17	7077	856
184	7943	7951	8	7079	864	185	7940	7952	12	7079	861
186	7947	7951	4	7077	870	187	7941	7948	7	7075	866
188	7948	7922	26	7059	889	189	7942	7923	19	7060	882
190	7947	7922	25	7060	887	191	7939	7920	19	7059	880
192	7943	7918	25	7057	886	193	7934	7916	18	7054	880
194	7936	7914	22	7050	886	195	7927	7911	16	7045	882
196	7927	7907	20	7040	887	197	7916	7900	16	7034	882
198	7914	7893	21	7028	886	199	7902	7890	12	7021	881
200	7899	7886	13	7015	884	201	7889	7882	7	7008	881
偶偶核偏差之和			229		14767	奇A	核偏差之和		214		14682

表 4 用 NL-3, NL-Z 参数组计算 Pu 同位素的每核子结合能

Pu		NL-3		NL-Z		Pu		NL-3		NL-Z	
A	$E_{\rm exp}/{\rm keV}$	$E_{\rm th}/{\rm keV}$	$\Delta E/{\rm keV}$	$E_{\rm th}/{\rm keV}$	$\Delta E/{\rm keV}$	Α	$E_{\rm exp}/{\rm keV}$	$E_{\rm th}/{\rm keV}$	$\Delta E/{\rm keV}$	$E_{\rm th}/{\rm keV}$	$\Delta E/{\rm keV}$
228	7591	7591	0	6736	855	229	7587	7589	2	6733	854
230	7591	7589	2	6728	863	231	7587	7589	2	6729	858
232	7589	7588	1	6728	861	233	7584	7584	0	6725	859
234	7585	7580	5	6722	853	235	7579	7576	3	6718	861
236	7578	7571	7	6713	866	237	7570	7565	5	6707	863
238	7568	7558	10	6702	867	239	7560	7551	9	6695	865
240	7556	7544	12	6687	869	241	7546	7536	10	6679	866
242	7541	7527	14	6671	870	243	7531	7518	13	6661	870
偶偶核偏差之和			51		6904	奇A	核偏差之和		44		6896

注: 4个表中的ΔE都是取绝对值.

计算结果十分出人意料.对于上述4个同位素链, 无论用哪组相互作用参数,偶偶核结合能的偏差(即 RMF理论Hatree近似下结果与实验值之差)普遍比 奇A核略大!这与通常的预期正好相反.考虑到RMF 理论计算本身存在一定近似,而且耦合常数的拟合已 隐含核物质和有限核性质的约束.可以推断:用RMF 理论直接计算奇A核的结合能还是相当可靠的,至少 不会比偶偶核的结果差.

另外从上述结果还可看出,用NL-3参数组得到的 计算结果比NL-Z参数组好得多.若用NL-3参数组, 对于偶偶核,每核子结合能的平均偏差为

$$\Delta \overline{E} = \frac{1}{4} \left(\frac{533}{9} + \frac{242}{15} + \frac{229}{17} + \frac{51}{8} \right) = 23.8 \text{keV},$$

而奇A核每核子结合能的平均偏差为

$$\Delta \overline{E} = \frac{1}{4} \left(\frac{263}{9} + \frac{125}{15} + \frac{214}{17} + \frac{44}{8} \right) = 13.9 \text{keV}.$$

类似的,采用NL-Z参数组,给出偶偶核每核子结合能的平均偏差为

$$\Delta \overline{E} = \frac{1}{4} \left(\frac{7691}{9} + \frac{12994}{15} + \frac{14767}{17} + \frac{6904}{8} \right) = 863.1 \text{keV},$$

$$\widehat{\sigma} A \, k 5 = 863.1 \text{keV},$$

 $\Delta \overline{E} = \frac{1}{4} \left(\frac{7600}{9} + \frac{12844}{15} + \frac{14682}{17} + \frac{6896}{8} \right) = 856.6 \text{keV},$ 虽然后者绝对值大得多,但偶偶核与奇A核的相对大 小是一致的.

除了结合能,同时还计算了原子核的电荷均方半

表 5 用 NL-3, NL-Z 参数组计算 Xe 同位素的电荷半径 r

Xe		NL-3		NL-Z		Xe		NL-3		NL-Z	
Α	$r_{\rm exp}/{\rm fm}$	$r_{\rm th}/{\rm fm}$	$\Delta r/{\rm fm}$	$r_{\rm th}/{\rm fm}$	$\Delta r/{ m fm}$	A	$r_{\rm exp}/{\rm fm}$	$r_{\rm th}/{\rm fm}$	$\Delta r/{ m fm}$	$r_{\rm th}/{\rm fm}$	$\Delta r/{\rm fm}$
128	4.776	4.822	0.046	5.003	0.227	129	4.776	4.833	0.057	5.016	0.240
130	4.783	4.837	0.054	5.025	0.242	131	4.781	4.851	0.070	5.038	0.257
136	4.799	4.907	0.108	5.101	0.302	137	4.814	4.926	0.112	5.121	0.307
138	4.836	4.946	0.110	5.142	0.306	139	4.851	4.968	0.117	5.171	0.320
140	4.869	4.986	0.117	5.198	0.329	141	4.885	5.017	0.132	5.222	0.337
偶偶核偏差之和			0.435		1.406	奇 A 柊	亥偏差之和		0.488		1.461

表 6 用 NL-3, NL-Z 参数组计算 Pt 同位素的电荷半径 r

Pt		NL-3		NL-Z		Pt		NL-3		NL-Z	
A	$r_{\rm exp}/{\rm fm}$	$r_{\rm th}/{\rm fm}$	$\Delta r/{\rm fm}$	$r_{\rm th}/{\rm fm}$	$\Delta r/{\rm fm}$	Α	$r_{\rm exp}/{\rm fm}$	$r_{\rm th}/{\rm fm}$	$\Delta r/{\rm fm}$	$r_{\rm th}/{\rm fm}$	$\Delta r/{\rm fm}$
178	5.372	5.418	0.046	5.565	0.193	179	5.392	5.435	0.043	5.583	0.191
180	5.384	5.446	0.062	5.647	0.263	181	5.400	5.459	0.059	5.666	0.266
182	5.397	5.469	0.072	5.679	0.282	183	5.403	5.480	0.077	5.691	0.288
184	5.403	5.489	0.086	5.702	0.299	185	5.416	5.499	0.083	5.712	0.296
186	5.405	5.508	0.103	5.721	0.316	187	5.407	5.517	0.110	5.730	0.323
188	5.406	5.476	0.070	5.682	0.276	189	5.407	5.491	0.084	5.700	0.293
190	5.412	5.503	0.091	5.713	0.301	191	5.411	5.511	0.100	5.723	0.312
192	5.418	5.517	0.099	5.731	0.313	193	5.420	5.524	0.104	5.741	0.321
194	5.425	5.533	0.108	5.750	0.325	195	5.428	5.541	0.113	5.759	0.331
偶偶核偏差之和			0.737		2.568	奇 A 桂	亥偏差之和		0.773		2.621

注: 2个表中Δr都是取绝对值.

径. 总体来说, 计算结果与实验比较还是满意的. 限于 篇幅, 表5, 表6只列出Xe和Pt两个同位素链的结果 (电荷半径的实验数据摘自文献[18]).

从表5,6可知,对于NL-3参数组,偶偶核电荷半径的平均偏差为

$$\Delta \overline{r} = \frac{1}{2} \left(\frac{0.435}{5} + \frac{0.737}{9} \right) = 0.084 \text{fm}$$

而奇A核电荷半径的平均偏差为

$$\Delta \overline{r} = \frac{1}{2} \left(\frac{0.488}{5} + \frac{0.773}{9} \right) = 0.092 \text{fm}$$

用实验值平均 \overline{r} = 5.11fm 计算, 对应的相对偏差 分别是1.64%和1.82%. 若用 NL-Z 参数组, 偶偶核电 荷半径的平均偏差为

$$\Delta \overline{r} = \frac{1}{2} \left(\frac{1.406}{5} + \frac{2.568}{9} \right) = 0.283 {\rm fm}$$

奇A核电荷半径的平均误差为

$$\Delta \overline{r} = \frac{1}{2} \left(\frac{1.461}{5} + \frac{2.621}{9} \right) = 0.292 \text{fm}$$

对应的相对偏差分别是5.55%和5.73%. 与结合 能计算类似, NL-3参数组仍比NL-Z要好. 与偶偶核相 比, 奇 A 核电荷半径相对偏差稍大(在0.2%以内), 但 是仍在实验误差范围内.

参考文献(References)

- Sharma M M, Lalazissis G A, Ring P. Phys. Lett., 1993, B317: 9-13
- Serot B D, Walecka J D. Adv. Nucl. Phys., 1986, 16: 1-327
- 3 SHI Hua-Lin, CHEN Bao-Qin, MA Zhong-Yu. Phys. Rev., 1995, C52: 144—156
- 4 REN Zhong-Zhou, ZHU Z Y, CAI Y H et al. Phys. Lett., 1996, B380: 241
- 5 REN Zhong-Zhou, CHEN Ding-Han, TAI Fei et al. Phys. Rev., 2003, C67: 064302
- 6 LI Jun-Qing, MA Zhong-Yu, CHEN Bao-Qiu et al. Phys. Rev., 2002, C65: 064305
- 7 Furnstahl R J, Price C E. Phys. Rev., 1989, C40: 1398– 1413
- 8 ZHONG Xian-Hui, LI Lei, ZHANG Xiao-Bing et al. HEP & NP, 2003, 27: 598 (in Chinese)
 (钟显辉, 李磊, 张小兵等, 高能物理与核物理, 2003, 27: 598)

4 结论

用相对论平均场理论计算分析了4个典型的同位 素链核素的结合能和电荷半径. 在相互作用参数, 对 能隙和形变参数未作进一步调整的前提下,发现计算 的奇A核结合能普遍比偶偶核略好.虽然由于奇A核 不满足Hartree近似条件,理论上应当比偶偶核有更 大的误差. 但是由于实际上耦合参数的拟合一般是先 作Hartree近似,然后再根据实验数据确定可调参数, 奇A核应有的系统误差已被拟合参数的调节抹去了. 若不考虑磁矩等奇 A 核特性时, 可以认为相对论平均 场理论对于奇 A 核的结合能、电荷半径、形变的计算 是可靠的,与偶偶核是一样好的.我们也初步分析了 奇奇核的情况,结论也大致相同.进一步分析可以发 现, NL-3和NL-Z两组参数给出的结合能绝对值几乎 都小于实验值, 而奇A核结合能的绝对值一般小于偶 偶核(参见表1—4), 所以奇A核结合能计算值就与实 验值比较接近,误差也就小了.由此,可以推断,如另 有参数组计算的结合能绝对值大于实验值,则偶偶核 的误差可能将小于奇A核.

9 CHEN Ding-Han, TAI Fei, REN Zhong-Zhou. HEP & NP, 2003, 27: 707 (in Chinese)

(陈鼎汉, 邰非, 任中洲. 高能物理与核物理, 2003, 27: 707)

- 10 Mehta M S, Rag B K, Patra S K et al. Phys. Rev., 2002, C66: 044317
- Furnstahl R J, Price C E. Phys. Rev., 1989, C40: 1398– 1413
- 12 Hofmann U, Ring P. Phys. Lett., 1988, **B214**: 307
- 13 Lee S J, Fink J, Balantekin A B et al. Phys. Rev. Lett., 1986, 57: 2916
- 14 Reinhaed P G. Rep. Prog. Phys., 1989, **52**: 439
- Gambhir Y K, Ring P, Thimet A. Ann. Phys., 1990, 198: 132—179
- 16 Moeller P, Nix J R, Myers W D et al. At. Data Nucl. Data Tables, 1995, **59**: 185
- 17 Audi A, Wapstra A H, Thibault C. Nucl. Phys., 2003, A729: 337
- 18 Angeli I. At. Data. Nucl. Data Tables, 2004, ${\bf 87}:$ 185

A Systematic Study on the Even-Even Nuclei and Odd-A Nuclei Using Relativistic Mean-Field Theory^{*}

DING Bin-Gang^{1,2;1)} LU Ding-Hui²

1 (College of Science, Huzhou Teacher College, Huzhou 313000, China) 2 (Institute of Modern Physics, Zhejiang University, Hangzhou 310027, China)

Abstract The ground state properties of the four isotope chains, ²⁸Ni, ⁵⁴Xe, ⁷⁸Pt, ⁹⁴Pu are studied in the relativistic mean-field theory by using two sets of parameters, NL-3 and NL-Z. We find that the binding energies of odd-A nuclei are even closer to the corresponding experimental results, compared with those of the even-even nuclei. Our results indicate that it is reliable to neglect the space component of the vector meson fields in calculating binding energies of odd-A nuclei in the relativistic mean-field theory.

Key words relativistic mean-field theory, binding energy, even-even nuclei, odd-A nuclei

Received 28 April 2005

^{*}Supported by National Natural Science Foundation of China (10475026, 10235030,10175052)

¹⁾ E-mail: dingbingang@163.com