利用羊八井广延大气簇射阵列探测来自壳型超新星 遗迹 G40.5-0.5 的 TeV γ 射线发射^{*}

羊八井 ASY 合作组

张吉龙^{1:1)} 崔树旺¹ 丹增罗布² 丁林垲¹ 丁晓红² 冯存峰³ 冯振勇⁴ 高晓宇⁵ 耿庆喜⁵ 郭宏伟² 何会海¹ 何瑁³ 胡红波¹ 黄庆⁴ 贾焕玉⁴ 乐贵明⁶ 李金玉³ 卢红¹ 陆穗苓¹ 孟宪茹² 木均⁵ 任敬儒¹ 谭有恒¹ 王辉¹ 王云冈¹ 吴含荣¹ 薛良³ 杨先楚⁵ 叶宗海⁶ 余光策⁴ 袁爱芳²

张慧敏1 张乃健3 张学尧3 张勇1 张毅1

扎西桑珠2 周勋秀4

1 (中国科学院高能物理研究所粒子天体物理重点实验室 北京 100049) 2 (西藏大学数理系 拉萨 850000) 3 (山东大学物理系 济南 250100) 4 (西南交通大学近代物理系 成都 610031) 5 (云南大学物理系 昆明 650091) 6 (中国科学院空间科学与应用研究中心 北京 100080)

摘要 利用羊八井广延大气簇射阵列从2000年10月到2001年9月的数据,对壳型超新星遗迹 G40.5-0.5可能的TeV γ射线发射进行了探测.用对扩展源的二维分析方法发现一个最高超出为 4.4σ的天区,EGRET不明源GeV J1907+0557非常接近这一最高超出天区的中心.

关键词 广延大气簇射 γ射线 壳型超新星遗迹 EGRET不明源

1 引言

第30卷第1期

2006年1月

宇宙线的起源问题是宇宙线研究最基本的问题之 一.目前普遍认为,宇宙线的主体应起源于银河系的 超新星爆发.在TeV能区,已经观察到十余个发射γ 射线的天体,包括河内的超新星遗迹、银心、以及河 外的活动星系核.其中,大部分可以用高能电子的逆 康普顿散射过程作出解释.这说明,已经发现的TeVγ 源,很大的可能是高能电子源.

但是, 宇宙线的主要成分是质子和核. 在实验上 解决宇宙线的起源问题, 还需要找到能将质子和核加 速到高能的天体. 目标之一, 是探测来自壳型超新星 遗迹的 TeV γ 发射. 壳型超新星遗迹, 指超新星爆发 后很多年, 仍存在继续向外扩张的外壳. 超新星爆发 的抛射物质穿过星际介质向外膨胀产生激波, 通过费 密加速机制而加速粒子. 按照超新星遗迹激波加速模 型, 质子可以被加速到100 TeV 的量级. 如果超新星遗 迹的距离在几个 kpc 左右, 而且在超新星遗迹外壳附 近, 又有一定密度的星际介质, 被加速的质子与之碰 撞, 产生的 π^0 就可以引起能在地面观测到的 TeV 能区 的 γ 射线^[1].

最近几年,采用成像切仑可夫望远镜阵列,已经 观测到几例壳型超新星遗迹^[2].例如RXJ1713-3946, 已经测得200GeV—40TeV能区的γ射线能谱^[3].

²⁰⁰⁵⁻⁰⁴⁻³⁰ 收稿, 2005-07-18 收修改稿

^{*}国家自然科学基金(19635010)资助

¹⁾ E-mail: zhangjl@mail.ihep.ac.cn

羊八井AS-γ实验,其灵敏度不能与成像切仑可夫 望远镜相比,但它具有宽视场和全天候的优势,仍可 在普查高能天体方面发挥优势.本文报道在壳型超新 星遗迹G40.5-0.5的天区,利用AS-γ数据进行TeV能 区γ发射的探测结果.

根据射电观测结果, G40.5-0.5呈现壳型结构, 角度扩展是0.37°, 其射电发射为幂律谱, 谱指数 $\alpha = 0.41 \pm 0.05$, 采用Σ-D关系估计其距离为5.5-8.5kpc, 位于Sagittarius旋臂内^[4].

在X射线波段, ASCA卫星的GIS在EGRET不明源GeV J1907+0557附近天区观测到两个分离的信号^[5],估计可能是一个扩展源,也可能是信号计数低而形成的分离.该信号位于GeV J1907+0557的95%置信区间.

在 GeV 能 区,根据 EGRET 第1次公布的结果 (the first EGRET catalog)^[6],G40.5–0.5被建议与 EGRET不明源GRO J1904+06相关联^[7].EGRET第 3次所公布的观测结果(the third EGRET catalog)中, 再次认为G40.5–0.5与不明源3EG J1903+0550^[8]关 联.Lamb等根据EGRET最初4.5年的数据,选取能 量大于1GeV 的 γ 光子所作的分析,给出的EGRET GeV γ 射线源表(the GeV γ -ray catalog)^[9],在共46 个GeV高显著性源中,其中GeV J1907+0557的信号 超出达到5.9 σ ,积分流强为(9.2±1.9)×10⁻⁸cm⁻²·s⁻¹, 位于银道坐标(40.08, -0.88)处.GeV J1907+0557 位置与3EG J1903+0550位置相隔在1°以外,GeV J1907+0557的65%置信区间正处于G40.5–0.5的外 壳上.

在TeV能区, HEGRE利用由4个3m镜子组成的 切仑可夫望远镜阵列, 对G40.5-0.5附近天区进行了 大范围扫描^[10], 没有观测到有信号超出, 估计了流强 上限.

同样在TeV能段,Whipple组用10m切仑可 夫望远镜对G40.5-0.5附近天区的观测,在GeV J1907+0557天区发现相对背景的信号增强区域^[11].

由于G40.5-0.5的壳型结构,利用AS-γ数据在G40.5-0.5的天区进行TeV能区γ发射的探索,一般的点源分析方法对它不适用,必须采用对扩展源的处理方法.在对超新星遗迹的TeVγ发射寻找工作基础上^[12],发展了针对扩展源的二维分析方法,用于探测壳型超新星遗迹G40.5-0.5可能的TeVγ射线发射.利用羊八井AS-γ阵列1990—1993年的数据,发现了来自G40.5-0.5附近天区的2.8σ信号超出^[13].对羊八井AS-γ阵列1998—1999年的数据分析,发现来自

G40.5-0.5附近天区最高达3.9σ的超出. 对羊八井ASγ阵列2000—2001年的数据分析,发现一个最高超出 为4.4σ的天区^[14].这一最高超出天区位于EGRET 不明源3EG J1903+0550的位置附近,EGRET不明源 GeV J1907+0557非常接近这一最高超出天区的中心.

2 实验介绍

羊八井 AS-γ三期阵列(Tibet III)从1999年10月 在羊八井(海拔4300m)建成并开始正式运行. 阵列由 533个0.5m²塑料闪烁体探测器排列成相互间隔7.5m 的方阵,覆盖面积为22050m²,用于探测能量在3TeV 左右的宇宙射线簇射^[15]. 阵列中的497个快时间探测 器,在任意4路快时间探测器记录到大于1个粒子的符 合条件下,以680Hz的触发率采集数据,死时间约为 10%,数据记录量达到20GB/d. 对这些原始数据进行 离线处理时,加上以下几个判选条件:

1) 阵列中的497个快时间探测器,至少4个探测器记录的等效粒子数大于1.25;

2) 事例的芯位落在阵列内;

3) 事例的天顶角小于40°.

利用 Monte Carlo模拟, 给出阵列对质子的阈能 为1.5TeV, 对>3TeV事例的角分辨为0.87°±0.02°. 利 用前面所述条件选出的事例, 用月亮阴影图求出阵列 的角分辨, 与 Monte Carlo方法给出的一致. 月亮阴影 图还得到阵列的系统误差约为0.1°. 阵列的探测能量 已经开始和切仑可夫望远镜的探测能量有部分交叠.

3 用于扩展源寻找的二维分析方法

羊八井 AS-γ阵列在 TeV 能区的角分辨约为1°. 对于点源 (例如 Crab) 寻找,取以点源为中心,以角分 辨为半径的一个天区作为信号源区.为了提高信噪 比,信号源区还要取得大一点.对于象壳型超新星遗 迹这一类扩展源,它如果有 TeV 能区的γ发射,发射 区本身就分布在一个较宽的范围,不宜再用点源寻找 方法.本工作使用一种二维分析方法.在赤道坐标系 中,取G40.5-0.5为原点,沿赤经 α 方向为x轴,赤纬 δ 方向为y轴建立坐标系,将x轴及y轴在±1°范围内分 成0.1°×0.1°的共400个小方格.分别以这些方格的共 441个格点为假想源,以假想源为中心取一定角半径 的圆形区域为向源区.向源区窗口的半径选择使由公 式 $N_{\rm S}/N_{\rm B}^{1/2}$ 决定的信噪比达到最佳,这里 $N_{\rm S}$ 为信号计 数, $N_{\rm B}$ 是背景计数,这样选取的源区窗口包含了来自 源区的大约50%的信号计数. 由于阵列的角分辨与 每个事例的总粒子数密度 $\Sigma \rho$ 有关,在进行数据分析 时也考虑了这一关联,选取满足条件的事例. 由于在 数据的重建过程中每个事例的拟合好坏程度与前锋 面拟合残差 residual 及着火探测器数目 nch 均有关系, 我们给出了一个由这两个参量组合而成的组合参量 residual/nch对数据进行选择.采用等天顶角方法估 计背景,在与源区同一天顶角环带的两边,左右对称 地分别取4个大小与源区相同大小、相互吻接的圆形 区域统计背景计数. 等天顶角方法可以在最大程度上 减小阵列计数在天顶角分布上的不均匀. 阵列计数存 在一定的方位角分布不均匀性,因此对背景计数作了 方位角分布不均匀性的修正,并且尽量缩小背景区域 在方位角环带上所张的角度以减小方位角不均匀性的 影响. 在二维分析中, 以这441个格点为中心的圆形区 域相互交叠,因此是高度相关的.

在用EAS阵列所进行的实验中,由于在几个TeV 能区还没有找到一个有较强稳定γ发射的星体,因此 在这个能区没有一个能作为标准烛光的γ源.因此, 人们只能采用太阳或月亮作为赝负源检验阵列的性 能.即利用太阳或者月亮对宇宙线的遮挡效果,作出 太阳或月亮的宇宙线阴影图,并用此阴影图来检验阵 列的角分辨等性能. 羊八井阵列能够给出很清晰的太 阳及月亮的阴影图,并可根据阴影图决定阵列的角分 辨能力^[16].为了考察新发展的对扩展源探测的二维 分析方法,用二维分析方法,利用Tibet III 阵列Phase 2(2000年10月—2001年9月)的数据作出月亮阴影图. 对每一个数据,选用 $\Sigma \rho > 15$ 事例作它们的月亮阴影 图, 它对应能量大于3TeV的事例. 最后得到Phase 2 数据对应能量大于3TeV情况的月亮阴影的最大缺损 为18σ. 根据以上月亮阴影的结果说明, 用二维分析方 法能够得到清晰的月亮阴影, 证明了这一方法是正确 的,能够运用在下面对扩展源的寻找中.

由于蟹状星云(Crab)在甚高能区被探测到有稳 定的γ发射,因而被作为甚高能γ天文的标准烛光.但 是,人们在以往利用地面的EAS阵列进行的探测中, 一直没能在几个TeV能区找到一个有稳定γ发射的星 体,因此在这个能区没有一个能作为标准烛光的γ源. 最近利用羊八井二期HD阵列连续3年的数据在几个 TeV能区观测到蟹状星云的5.5σ直流稳定超出^[17].这 一结果的显著性还不是太高,而且需要的数据累积时 间较长,还不能认为已经在TeV能区找到了一个能作 为标准烛光的星体.但是,作为一种尝试,可以使用二 维分析方法对蟹状星云的直流稳定超出进行探寻, 以 检查新方法.用Phase 2(2000年10月—2001年9月) 数据对应能量大于3TeV事例, 采用二维分析方法得 到蟹状星云的3.5σ直流稳定超出, 这进一步验证了二 维分析方法.

4 结果

壳型超新星遗迹G40.5-0.5的角扩展为0.37°,与 羊八井AS-γ实验TibetШ阵列的角分辨为同一数量 级,不能将其作为点源进行处理.下面的分析采用对 扩展源的二维分析方法.

利用羊八井AS-γ阵列Phase 2(2000年10月— 2001年9月)的数据,选取J2000赤道坐标系,取坐标 中心 (R.A.=287.1°, decl.=5.5°), 对 $\Sigma \rho > 15$ 事例选用 窗口半径1.4°, 对 $\Sigma \rho > 100$ 事例选用窗口半径1.0° (它们分别对应能量大于3TeV及能量大于10TeV的事 例), 采用二维分析方法分别得到G40.5-0.5的最大直 流超出分别为4.4o和3.4o. 图1是能量大于3TeV事 例信号的二维分布图,图2是能量大于10TeV事例信 号的二维分布图. 对应于能量大于3TeV事例的4.4σ 最大信号超出区域,图3给出了这一区域的累积超出. 3 TeV事例的 4.4σ 信号超出对应概率为 5.41×10^{-6} ,如 将对共441个格点作为假想源的分析视作相互独立的, 概率为2.38×10⁻³, 对应的超出为2.8σ. 由于二维分析 方法中以441个格点为中心,所取的一定半径的圆形 区域相互交叠,因此是高度相关的,考虑到这一相关 后的信号超出应该比2.8σ更显著.

图 1 G40.5-0.5的信号超出(E>3TeV) 坐标中心位于赤道坐标系(R.A.=287.1°, decl.=5.5° (J2000)),窗口半径为1.4°.

图 2 G40.5-0.5的信号超出(E > 10TeV) 坐标中心位于赤道坐标系(R.A.=287.1°, decl.=5.5° (J2000)),窗口半径为1.0°.

图 3 G40.5-0.5 对应于 4.4σ (E > 3TeV) 最大信 号超出区域的累积超出

参考文献(References)

- 1 Drury L O'C, Aharonian F A, Volk H J. A & A, 1994, **287**: 959
- 2 Enomoto R et al. Nature, 2002, 416: 823
- 3 Aharonian F A et al. Nature, 2004, 432: 75
- 4 Downes A J B. A & A, 1980, 92: 47
- 5 Mallory S E et al. ApJS, 2001, 133: 451
- 6 Fichtel C E et al. ApJS, 1994, 94: 551
- 7 Sturner S J, Dermer C D. A & A, 1995, 293: L17
- 8 Hartman R C et al. ApJS, 1999, 123: 79
- 9 Lamb D Q, Macomb D J. ApJ, 1997, 488: 872
- 10 Aharonian F A et al. A & A, 2001, **375**: 1008
- 11 Fegan S J. Proc. of the 27th ICRC. Hamburg, 2001, $\mathbf{OG2}:$ 2575
- 12 ZHANG Ji-Long et al. HEP & NP, 1999, 23(1): 22-27(in

5 结论

在壳型超新星遗迹G40.5-0.5的天区,利用ASγ数年数据进行TeV能区γ发射的探测.对1990— 1993年的数据分析发现2.8σ超出,对1998—1999年 的数据分析发现3.9σ超出.对2000—2001年的数据 分析,又发现4.4σ的超出,而且EGRET不明源GeV J1907+0557正位于这一最高超出天区.

在同一天区, 几年的数据都有超出. 由于AS-γ实 验角分辨的限制, 尤其是不能分辨质子与γ, 所以不同 时段、不同能量的超出并不准确出现在同一位置, 但 也不能用统计涨落简单解释, 有待进一步的观测.

于2002年扩大后的新的羊八井三期阵列,塑料闪 烁体探测器已经由原来的533个增加到733个,有效面 积提高到原来的1.5倍^[18].新的三期阵列数据将对在 本文中G40.5-0.5的探测结果作进一步的补充.

紫金山天文台德令哈毫米波射电观测站对 G40.5-0.5附近±1°天区进行了2′×2′的CO(J=1-0)发射线的初步探测,描绘出G40.5-0.5爆发气壳的 细致结构,推算出该天区分子云的距离、速度、质量 及密度等物理参量,并显示在它周围存在可作为靶物 质的密度较大星际介质,这正是有利于激波加速发生 p-p碰撞产生 π^0 辐射TeV γ射线的环境^[19].进一步的 观测正在进行中.

感谢日本东京大学宇宙线研究所大西宗博及川田 博士为羊八井阵列的成功运行所付出的辛勤劳动.感 谢羊八井宇宙线观测站的陈文益、赵成勇、杨刚和袁 向飞为阵列的安装及运行所作的工作.

Chinese)

(张吉龙等. 高能物理与核物理, 1999, **23**(1): 22—27)

- 13 ZHANG Ji-Long. CCAST-WL WORKSHOP SERIES, 1998, 90: 159—165
- 14 ZHANG Ji-Long. Proc. 28th ICRC. Tsukuba, 2003, OG2: 20405
- 15 Amenomori M et al. Proc. 27th ICRC. Hamburg, 2001, OG2: 2395
- 16 Amenomori M et al. Phys. Rev., 1993, D47: 2675
- 17 Amenomori M et al. ApJ, 1999, **525**: L93
- Amenomori M et al. 28th ICRC. Tsukuba, 2003, OG2: 3019

 YANG Ji, LU Deng-Rong. The First Workshop on Interdiscipl inary Research at Yangbajing. 2004 (杨戟, 逯登荣. 第一届羊八井交叉学科研讨会. 2004)

Search for TeV Gamma Rays Emission from the Shell-Like SNR G40.5–0.5 Using the Yangbajing Extensive Air Shower Array^{*}

ZHANG Ji-Long^{1;1)} CUI Shu-Wang¹ DANzengluobu² DING Lin-Kai¹ DING Xiao-Hong²
FENG Cun-Feng³ FENG Zhen-Yong⁴ GAO Xiao-Yu⁵ GENG Qing-Xi⁵ GUO Hong-Wei²
HE Hui-Hai¹ HE Mao³ HU Hong-Bo¹ HUANG Qing⁴ JIA Huan-Yu⁴ LE Gui-Ming⁶
LI Jin-Yu³ LU Hong¹ LU Sui-Ling¹ MENG Xian-Ru² MU Jun⁵ REN Jing-Ru¹
TAN You-Heng¹ WANG Hui¹ WANG Yun-Gang¹ WU Han-Rong¹ XUE Liang³
YANG Xian-Chu⁵ YE Zong-Hai⁶ YU Guang-Ce⁴ YUAN Ai-Fang²
ZHANG Hui-Min¹ ZHANG Nai-Jian³ ZHANG Xue-Yao³ ZHANG Yong¹

(Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, CAS, Beijing 100049, China)
 2 (Department of Mathematics and Physics, Tibet University, Lhasa 850000, China)
 3 (Department of Physics, Shandong University, Jinan 250100, China)
 4 (Institute of Modern Physics, South West Jiaotong University, Chengdu 610031, China)
 5 (Department of Physics, Yunnan University, Kunming 650091, China)
 6 (Center of Space Science and Application Research, CAS, Beijing 100080, China)

Abstract Using observation data of the Yangbajing extensive air shower array from October 2000 to September 2001, the TeV gamma rays from the shell-like SNR G40.5–0.5 direction were detected. A region with the highest excess of 4.4σ was found using two dimensional analysis method. The position of EGRET unidentified source GeV J1907+0557 is near the centrer of the region.

Key words extensive air shower, gamma rays, shell-like supernova remnants, EGRET unidentified source

Received 30 April 2005, Revised 18 July 2005

^{*}Supported by NSFC (19635010)

¹⁾ E-mail: zhangjl@mail.ihep.ac.cn