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Abstract According to the method of path integral quantization for the canonical constrained system in

Faddeev-Senjanovic scheme, we quantize the supersymmetrical electrodynamic system in general situation,

and obtain the generating functional of Green function. Another first class constraint is obtained by making

the linear combination of several primary constraints, the generator of gauge transformation is constructed,

gauge transformations of all the different fields are deduced. Utilizing the consistency equation of gauge fixing

condition to deduce another gauge fixing condition, we find that the secondary constraint of the system is an

Euler-Lagrange equation which is just the conversation law of electric charge. Thus, we do not need to calculate

the other secondary constraints step by step, and get no new constraints naturally. So, the Faddeev-Senjanovic

path integral quantization of the supersymmetrical electrodynamic system is simplified.

Key words supersymmetry, quantum electrodynamics, Faddeev-Senjanovic quantization, Dirac-Bergmman

algorithm

1 Introduction

The minimal supersymmetrical standard model
(MSSM) is currently the most favored candidate for
extension of the standard model. Researches on
supersymmetrical quantum field theories have great
meaning to the possible discovery of supersymmetry.

Kushreshtha and Miiller-Kirsten quantized 1+1
dimensional superfields in Faddevv-Jackiw schemem;
Batalin presented a superfield formulation of the
quantization program for the theories with the first
and second class constraints, and set up a phase-
space path integral expression entirely in terms of
superfields, further made BRST transformations and
canonical transformations enter on equal footing[2].
Rupp et al. obtained, in the level of supersym-

metrical quantum field theory, Slazvnov-Taylor iden-
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tity satisfying the invariance of the supersymmetrical

transformations'™ .
Supersymmetrical electrodynamics

(SQED) is a simple model of MSSM, and its ac-

tion is a singular Lagrange system. Using Faddeev-

quantum

Senjanovic path integral quantization scheme we
quantize the system of SQED, construct the gene-
rator of gauge transformation, and further give
gauge transformation and the generating functional

of Green functions.

2 Hamilton system

Under Wess-Zumino gauge, the SQED action is
obtained in terms of its component fields after the
integral of Grassmann coordinates of the action, i.e.,

the Lagrangian density i
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—F,, (x)F" (z) — 4\ (2)o" 3, \(z) +
(D1 (2)5 s () + (D)7 +
(D,.By) (D} B;) + (D, Ba(x))(D; B3 (x)) -
75 D@ @ @B (@)~ () Bafa) +
A(@) (461 (2) By (&) — (@) B3 (2))] +

m [y (2)iha () + 1 (2 ()] —

m?[By(2)B; (z) + Ba(2) B; ()] -

2

5 [Bi(2)B; (2) = B.(2) B3 ()], (1)

LSQED =

where

D,=0, —%ieAW D; =0, +%ieA,“ F,=0,A-0A,,

(2)
A, is gauge boson field, A is the gaugino fermionic
partner of A,, B, and B, are supersymmetrical part-
ners of 1, and ¥, which are two-component fermionic
matter fields, F,,(u,v=0,1,2,3) are gauge field
strength tensors, e and m, respectively, represent
electro-charge and mass parameters, All spinors are
two-component Weyl spinors. We take metrics® to

be g, =(1,—1,—1,—1), and introduce the Pauli ma-

trices U°<1 0),01(0 1>,02<OZ),
0 1 1 0 t 0
03(1 0),0000,0i0i.
0 -1

3 Analysis for constraints of the

Hamilton system

Since the Lagrangian of the SQED system is sin-
gular, we discuss its constraints in phase space, the
canonical momenta conjugate to the component fields
are

m, = 4F,0,

ma=0, wy=-—-4i\o?,

T, = DSB; = (ao +7ieA0

71-;(32 = D()BQ = (60 _iieAO

Ty, = 0, 7y, =—10%,

The canonical Hamiltonian density is given by
o1 )
HC = —AO 01 Tt — gﬂ'iﬂ'l +7T51 ﬂ-Bf +
1. .
EIGAO(WB1B1 77'(’3; Bl ) +’/TBQ’/TBE +
1, .
§I€A0(7T32B2 _WB;BQ)'F

SeAo(Ty T+ Ty 7) +

F,;F7 —(D;B,)(D;B;) — (D;B,)(D; By) —
Dy )T, — (D a)T o +

¢ o o * *
ﬁﬁwlBﬁwng)H(%Bl VB3] +

4ide® o, A — m(11, +¥1E2) -

e
m?*(B,B; + B;B}) + 3—2(Ble —B,B;). (4)

According to Dirac constraint theoryw, it follows that

there are 7 primary constraints

=m0, ¢)=m 0, ¢=mrx+4irc’=0,

¢2 = Ty, %07 (bg = WE‘HF% ~ 07 (bg =Ty, ~ 07

90 = gy o0, 20,

()
where the symbol “~” means weak equality in Dirac
sense!”.

The total Hamiltonian is given by
Hy = Jd‘*m(Hc + U1 ) + us Py + uz Py +usd +
us ¢y + usd +urd?). (6)
The consistency equations of primary constraints are
'? = {¢?, Hr}p =0,

(1=1,2,3,4,5,6,7,). (7)

Assume that F and G are functions of the
Grassmann canonical variables (n*,,), the Possion

Bracket is given by[g]

0.F0G
on® 0,

0.GOF

F =
{r.c} on> 0y’

(1ene

(®)

where np,ng represent the Grassmann parities of
functions F' and G, respectively. The Lagrangian
multipliers uy,us, Uy, us, Ug, Uy are solved out by con-
sistency equations of primary constraints ¢;(I =

2,3,4,5,6,7). Consistency of ¢; leads to a secondary
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constraint

1
¢51; ={mo,Hr}p=0,7"+ 516(*31731 —Bymp,+

Bimu; + Bima;)— 5eli 0%+ T3 7%%2) 0.

(9)

According to Dirac-Bergmman algorithlrn[S]7 three
situations may occur from the consistency equations:
(1) on the constraint’s surface, we get an identity
0=0; (2) the consistency equations are independent
of Lagrangian multipliers, we get new constraints;
(3) we get equations of Lagrangian multipliers. We
get ¢3 as a secondary constraint, it expresses the
charge conversation law of the SQED system in phase
space, and is just an Euler-Lagrange equation when
converted to configuration space, which cannot give
When substituting the solved La-

grangian multipliers into the consistency equation, we

new constraint.

also get an identity 0 =0, and cannot obtain new con-
straint.

We obtain another first-class constraint by making
the linear combination of ¢3, ¢S, ¢2, #2, g3, and further

renew to mark the constraints as follows

6A, = {Au(2),G}, =0,¢(x),
5= (Mx),G} =0,

3B; = (B;(2),G} = —giec(x) B;,

§B; = {Bi(x),G} = —%ies(x)B;

502 = {#a(0), G} = —ies(z) ¥
s = {s(2),G} = %ieg(x)wg,

67(-)\ = {ﬂ-A? G} = 07
1,
67(-31 = {7TBl (.’I;), G} — —516(5(3;)71-]317
1
omy = {mp, (2),G} = 5ies(a:)w"Bl,
1

1
(57@[,1 = {7T¢1 (SL’),G} = _§i€E($)7Twl7

Al = ¢(1)a
1,
Ay = ((bé)/:¢é_§le(¢296—¢194—¢193 +10205) =
1
ai7TZ+ 516(—B17T31—B27T32+Brﬂ'3;+B;7TB§)+

1,
516(—1/’27%2 — 1Ty, + 1Ty, + oy, ),

t = (2537 0 =¢87 O3 :¢27 04 =¢27 0s =¢87 s :ﬁbg-
(10)

In terms of the definitions of Dirac’s first and
second-classe constraints[g], we obtain that A;, A, are
the first class of constraints, and 6,,60,,605,0,4,05,0¢
are the second-class constraints.  According to

Castellani’s method to construct generator of gauge

]

transformation!"° , we get the generator of the system

as follows

G = Jdgw[é(m)/ll —e(x)Ay) = J'd?’x{fs(:b)wo —e(x) x

. 1 ® % * %
|:a7;ﬂ—1+216(_Bl7TBl_B27TBZ+ 1Th+Bimg, )+

%ie(wzﬂ'% —Eﬂwl + 1Ty, —¢27Tw2)} } (11)

Therefore, the transformations of the component

fields are

SA= {\(z),G} =0,
5By = {Bi(2),G} = %ies(x)Bl,
5By = {Ba(z),G} = %iea(w)Bg,
301 = {1(2), G} = —ies()i,
S = (1 (2),G} = gies(z)oh,
g, = {m,(x),G} =0, (12)
bz = {ms(@),G} =0,

578, = (i, (@), G} =~ giee(w)ms,,

5, = {7 (2), G} = giee(e)ms,,

S = {m(x), G} = f%ies(m)w@,

1
67r1112 = {71—1&2 (JJ),G} = §i€€($)ﬂ'w2 .
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These transformations are gauge transformations in where

phase space for the system. L = LP+ L. (19)

. . LP = Tq ll_H(” 20

4 Generating functional of Green v (20)

L, = u;A; +Uj9j + w0, (21)

function

The Lagrangian density is unchanged under the
gauge transformations (12). According to path in-
tegral quantization in Faddeev-Senjanovic Scheme[ll],
for each first-class constraint, we need to choose a

gauge fixing condition. Consider the Coulomb gauge
2,=0,A~0, (i=1,2,3). (13)

Using the consistency of 2,, we obtain another

gauge fixing condition as follows
1 )
Q1=V2A0—Zai7ﬁ%0. (14)

We introduce exterior sources of fields and their
conjugate momenta (p,,7), the generating func-

tional of Green function for this system is given by

Z[J, K] = JDwaa [T 6(4:)5(2.)5(6,)

ikl
det [{A;, 2, }[-(det[{0,,,0,,}[)"* x
exp{iJ'd‘lx(ﬂ'agb”‘ —H.+
Joo®+ K%y) }. (15)

It is easy to check that det|{A,,2.}|, det|{6,,,
0,,}| are independent of the fields, and thus we can
omit them from the generating functional of Green
function, then we have

Z[J K] = JD@“D%H&(Ai)é(Qk)d(HZ) X

i,k,l
exp{ijd‘*x(LmJaw+Kawa>}. (16)

Using the property of § function

@

[

The generating functional of Green function for this

exp(iu®A,). (17)

system is now deduced as follows

Z[J,K] = JDwO‘DwaDuivaDwk X

eXp{in4$(Leﬁ + JO‘(,DQ +Ka77a)}7 (18)

©* :(Am)"XvBlvB2vavB;7¢l>w27E7%auiyvjvwk)7

(22)
Mo = (T T T3, TBy s TB: T By TBS » Ty > T, s Tps T, )
(23)
Jo =y In; Ixy I8y s Iys IBrs Iy s Ty s Sy
T Ty Juss oy T )s (24)
K?=(K,,K\,Kx,Kp,,Kp,,Kg: Kps, Ky, ,Ky,,
Ko By), (25)

where u;,v;,w;, are the multiplier fields, and exterior
sources J,,,J,;,Ju, corresponding to the multiplier

fields are induced.

5 Summary and conclusion

Based on the constrained Hamilton theory, we
obtain the constraints in the singular SQED sys-
tem in phase space, two first-class and six secondary
constraints are obtained through combining the pri-
mary and secondary constraints. Using spinor elec-
trodynamics, Ref. [12] rigorously proved that the sec-
ondary constraints act as independent generators of
gauge transformations (Dirac conjecture) for the sys-
tem possessing only the first-class constraints, spinor
field 1 has the conjugate momentum 7, = i)y°, but it
is not considered as a constraint, and 7 is not intro-
duced as the conjugate momentum of 1 in Ref. [12].
We find that the secondary constraint (9) is the elec-
tric charge conversation law of supersymmetry spinor
electrodynamics. On the other hand, we may also use
Faddeev-Jackiw quantization method™® to quantize
the supersymmetrical electrodynamic system.

According to Castellani’s method to construct

generator of gauge transformations!™”

, we get the
generator of the gauge transformtions, and the gauge
transformations of the component fields.

Using path integral quantization for canonical
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constrained system in Faddeev-Senjanovic scheme, functional of Green function for this system. Further-
and considering Coulomb gauge and its consistent more, we can obtain the canonical Ward identities for
equation to fix gauge, we quantize the supersymmet- the system with the generating functional of Green
rical electrodynamic system, and get the generating function.
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