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Abstract In the SU(2) singlet down type vectorlike quark model, there exist a tree level coupling zsb

of b → sZ∗ and an additional D quark. In the framework we evaluate the D quark effects on B → Xsγ

by running the Wilson coefficients of the effective Hamiltonian with the renormalization scale from mD to

weak scale. Using the recent measurements for B→Xsl
+l−, we extract rather stringent constraints on the

size and CP violating phase of zsb, and find that the zero point of the forward-backward asymmetry may

have large deviation from that of the standard model and is very sensitive to zsb, and therefore, it can be

useful in probing the new physics.
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1 Introduction

The rare radiative decays B → Xsγ and B →
Xsl

+l− are sensitive probes of new physics
[1]

. Unlike

in the standard model (SM) where flavor changing

neutral currents (FCNC) arise only at loop level, in

the vector quark model (VQM)
[2, 3]

, the CKM matrix

is necessarily non-unitarity, leading to interaction Zs̄b

at tree level, and hence potentially large new physics

contributions can be expected.

There are some studies regarding the constraints

on model with extra singlet quark
[2, 3]

. In this work,

(i) we first integrate out the heavy D quark. New op-

erators are introduced for b→ sγ; (ii) since vectorlike

down-type quark contributions to b → sγ just occur

at loop level as the case of the SM, the constraints

from B → Xsγ on zsb, the tree level FCNC coupling

for b→ sZ, are less restrictive compared to those from

those processes governed by b→ sl+l− transition. Re-

cently, the rare decays B→Xsl
+l− (l = e,µ) also have

been measured by BaBar and Belle
[4, 5]

. In light of

the improvements mentioned above, it is necessary

to present a comprehensive analysis in this model.

2 b → sγ and b → sl+l− transitions in

vectorlike quark model

In VQM the difference between the new quark

and ordinary quarks of the three SM generations is

that both the left- and right-handed components of

the former quark are SU(2) singlets, leading to non-

unitarity as

zαβ ≡
3∑

i=1

V αiV βi∗ =

3∑

i=1

V iα∗

CKMV iβ
CKM =

δαβ−V α4V β4∗, (1)

where the matrix VCKM is enlarged to 3×4 and V is a

4×4 unitary matrix which relates the weak-eigenstates

q̃L to mass-eigenstates qL. The deviations from the

standard unitary triangles are going to vanish as the

down type singlet mass increases compared with elec-

troweak breaking scale v. The relevant interaction

Lagrangian can be found in Ref. [2].

In VQM, the down-type vector quark may be

much heavier than weak scale. In a theory with differ-

ent mass scales, the heavier scale should be integrated

out firstly, then Wilson coefficients are run with the
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renormalization scale from heavier scale to low scale

by using renormalization group equation. Only when

mD is about the weak scale, can W, Z boson, Higgs

boson and top quark be integrated out together. In

this work, we consider two possibilities as follows:

Scenario A: m2
W ≪m2

D

By keeping only the leading order terms of δD =

m2
W/m2

D, we obtain the effective Hamiltonian for

b→ sγ∗(g∗) as:

H
new

eff [b→γ∗(g∗)] =
4GF√

2
z∗

4sz4b

∑

i

Ci(µ)Oi(µ). (2)

A complete basis for the local operators is listed

below1) :

O1
LR = − 1

16π2
mbs̄LD2bR,

O2
LR =

1

16π2
gsmbs̄LσµνT abRGµν ,

O3
LR =

1

16π2
eedmbs̄LσµνbRFµν ,

Qφ0

LR =
1

2
g2
s mbφ

0φ0s̄LbR,

P 1,A
L = −i

1

16π2
s̄LT A

µνσDµDνDσbR,

P 2
L =

1

16π2
s̄LγµbR ∂ν

Fµν ,

R1,φ0

L = i
1

2
g2
sφ

0φ0s̄L 6DbL,

R2,φ0

L = ig2
s (∂

σ
φ0)φ0s̄LγσbL,

(3)

where T a stands for the SU(3)color generator, Fµν and

Gµν are field strengths of photon and gluon respec-

tively. Dµ = ∂µ−igsG
a
µT a − ieedAµ is the covariant

derivative. φ0 = H0, G0, and G0 stands for Goldstone

boson. The tensors T A
µνσ (A= 1, 2, 3, 4) appearing in

P 1,A
L have the following Lorentz structures

[6]
:

T 1
µνσ = gµνγσ, T 2

µνσ = gµσγν ,

T 3
µνσ = gνσγµ, T 4

µνσ =−iǫµνστγ
τγ5.

(4)

The coefficients of operators QLR and RL at scale

mD can be obtained by matching the diagrams of

full theory with effective theory at tree level while

for those of OLR, PL, by matching one loop diagrams

shown in Fig. 1. They read

C
QH0

LR

(mD) = −C
Q

χ0

LR

(mD)=− 1

g2
s

,

C
R

1,φ0

L

(mD)=2C
R

2,φ0

L

(mD)=− 1

2g2
s

,

COi
LR

(mD)=0, CP
1,1

L

(mD)= CP
1,3

L

(mD)=−11

18
,

C
P

1,2

L

(mD)=
8

9
, C

P
1,4

L

(mD)=−1

2
,C2

PL
(mD)= 0,

(5)

where i runs from 1 to 3. The values for operators O,

P are understood as the sum of H0 and G0 contribu-

tions.

Fig. 1. Matching conditions at scale mD in full

theory (left) and in the intermediate effective

field theory (right). Note that φ0 in the sec-

ond line of diagrams is not integrated out yet.

To obtain the coefficients of the operators at weak

scale, we extract the anomalous dimensions by calcu-

lating one-loop diagrams in unitary gauge with oper-

ator insertions. Then we solve renormalization group

equation (RGE) and have the coefficients at mW scale

as follows:

CO1

LR
=

247

548
ζ−

4

21 +
336

8905
ζ

113

126 − 511

780
ζ

8

21 +
1

6
ζ

2

3 ,

CO2

LR
=

247

1096
ζ−

4

21 +
168

8905
ζ

113

126 − 223

780
ζ

8

21 +
1

24
ζ

2

3 ,

CO3

LR
=

247

1096
ζ−

4

21 +
168

8905
ζ

113

126 − 223

780
ζ

8

21 +

5

12
ζ

2

3 − 3

8
ζ

16

21 (6)

CP
1,1

L

= CP
1,3

L

=−247

548
ζ−

4

21 − 791

4932
ζ

113

126 ,

CP
1,2

L

=
247

548
ζ−

4

21 +
1

12
ζ

8

21 +
875

2466
ζ

113

63 ,

CP
1,4

L

= −247

598
ζ−

8

21 − 1

12
ζ

8

21 +
14

411
ζ

113

126 ,

CP2

L
= 0,

where ζ = αs(mD)/αs(mW).

To match the operator set in (3) onto these oper-

ators obtained by integrating out the W, Z bosons,

Goldstone boson, Higgs boson and top quark as in

SM, we use the equations of motion to reduce all the

1)Strictly speaking, φ0 in Fig. 1 can be Z0 boson, which indicates that there exists operator ZµZ
µ
s̄RbL. However, since its

coefficient is suppressed by large scale mD, its contribution can be neglected safely in Scenario A
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remaining two-quark operators to the gluon and pho-

ton magnetic moment operators O2
LR and O3

LR which

are redefined as Q8G and Q7γ. Now the effective

Hamiltonian describing b→ sl+l− transition reads
[7]

Heff = −4GF√
2

KtbK
∗

ts

[ 10∑

i=1

C̃i(µ)Qi(µ)+

C̃7γ(µ)Q7γ(µ)+ C̃8G(µ)Q8G(µ)+

C9(µ)O9(µ)+C10(µ)O10(µ)

]
, (7)

where Qi (i = 1—10) are four-quark operators, Kij ≡
(VCKM)ij for i,j = 1,2,3.

Now we rewrite the Wilson coefficients as C =

CSM+Cnew where CSM stands for that of SM
[7]

while

Cnew denotes the deviation of the values between

VQM and SM. After straightforward calculations, at

mW scale, we have non-vanishing coefficients for new

physics contributions:

C̃new
2 = −κ, C̃3(mW)=−1

6
κ,

C̃new
7 = −2

3
sin2 θWκ, C̃new

9 =−2

3
cos2 θWκ,

C̃new
7γ =

[
23

36
− 1

4
ed

(
CO1

LR
−4CO3

LR
+CP

1,1

L

+

CP
1,2

L

−CP
1,4

L

)
+ed

(
1

3
+

1

9
sin2 θW

)]
κ,

C̃new
8G =

[
1

3
− 3

4
ed

(
CO1

LR
−4CO3

LR
+CP

1,1

L

+

C
P

1,2

L

−C
P

1,4

L

)
−3ed

(
1

3
+

1

9
sin2 θW

)]
κ,

C
new
9 =

π

αem

κ(−1+4sin2 θW), C
new
10 =

π

αem

κ, (8)

where κ ≡ zsb

KtbK∗

ts

. In deriving the above equation,

we have used the unitarity relation z4bz
∗

4s = −zsb

which is a direct result of Eq. (1).

Fig. 2. Tree level Feynman diagram contribut-

ing to b→ sγ and b→ sl+l−.

At this moment, we would like to point out that

these new contributions have different sources. The

terms proportional to
zsb

KtbK∗

ts

in C̃3,7,9 and C9,10 come

from the tree-level diagram as displayed in Fig. 2

whereas in C̃2, from tree diagram due to the non-

unitarity of CKM matrix in VQM
[2]

. In expressions

of C̃7γ,8G, the first constant term comes from the

charged current one-loop diagrams due to the non-

unitarity of CKM matrix in VQM, other terms pro-

portional to
zsb

KtbK∗

ts

come from the neutral current

one-loop diagrams.

Scenario B: m2
W ∼m2

D

In this scenario, the t and D quark, W and Z can

be integrated out together. The corresponding initial

values of Wilson coefficients C̃7γ,8G(mW) are changed

to
[2]

C̃new
7γ =

[
23

36
+(fZ

D(yD)+fH
D (wD)+fG

D (yD)) +

ed

(
1

3
+

1

9
sin2 θW

)]
κ,

C̃new
8G =

[
1

3
−3(fZ

D(yD)+fH
D (wD)+fG

D (yD)) −

3ed

(
1

3
+

1

9
sin2 θW

)]
κ,

(9)

where yD = m2
D/m2

Z, wD = m2
D/m2

H. Other Wilson

coefficients are the same as Scenario A we discussed.

The function fx
y stands for the contribution from bo-

son x mediated penguin one-loop diagram with quark

y in loops. They have forms as

fZ
D(x) = −5x2 +5x−4

72(x−1)3
+

x(2x−1)

12(x−1)4
lnx,

fH
D (x) = −edx

[
7x2−29x+16

48(x−1)3
+

3x−2

8(x−1)4
lnx

]
,

fG
D (x) = edx

[
5x2−19x+20

48(x−1)3
+

x−2

8(x−1)4
lnx

]
.

(10)

As a consistency check, in Scenario B in limit of

mD ≫ mW, from Eqs. (9), (10) one can infer that

the term fZ
D(yD)+fH

D (wD)+fG
D (yD)→ 1

24
ed, which is

the value of the term − 1

4
ed[CO1

LR
−4CO3

LR
+C

P
1,1

L

+

CP
1,2

L

−CP
1,4

L

] in (8) if the QCD running of the co-

efficients with the renormalization scale from mD to

mW is negligible. Therefore, under the approxima-

tion, values of C̃7γ(mW) and C̃8G(mW) in Scenario A

would be equivalent to those in Scenario B. Our calcu-

lation also shows that the running effect on the parts

from neutral current in Scenario A is large; however,

at mW scale, since the new dominant contribution

comes from the charged current diagrams, the total
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values of C̃7γ,8G(mW) are changed slightly. Since the

coefficients are insensitive to the mass of mD, in the

follows we will focus on Scenario A and study how to

constrain the interaction coupling of Z FCNC zsb in

VQM using B radiative decays.

3 Constraints on zsb in VQM from

B→Xsl
+l−

Now we constrain the parameter zsb from B →
Xsl

+l−. The invariant dilepton distribution is

dΓ (B→Xsl
+l−)

ds
=

(αem

4π

)2 G2
Fm5

b|K∗

tsKtb|2
48π3

(1−s)R0,

R0 = 4

(
1+

2

s

)∣∣C̃eff
7γ

∣∣2 +(1+2s)
(
|C eff

9 |2 + |C eff
10 |2

)
+

12Re(C̃eff
7γ C

eff∗

9 ). (11)

It depends on the tree level FCNC coupling zsb and

|KtbKts| which is determined by

|KtbK
∗

ts| ≃ |KcbK
∗

cs|+ |zsb|cosθ, θ = arg(κ) , (12)

where |KcbKcs| can be used as input of the direct

experimental values
[8]

.

There is some progress in predicting B→Xsl
+l−.

The complete computations of NLL and NNLL pre-

cision of the decay for small dilepton mass can be

found in [9] and [10], respectively. Recently, the first

calculation of the NNLL contributions for arbitrary

dilepton invariant mass is also available
[11]

. For con-

sistency, we use NLL prediction
[9]

in our calculation,

and exclude the resonances J/ψ, ψ′ contributions by

using the same cuts as experiments
[5]

so we can com-

pare our predication with experiments. In addition,

we also consider theoretical errors which come mainly

from the uncertainties of mt,mb and mc/mb
[8]

, then

combine the experimental and theoretical relative er-

rors together.

Using the current average value for B→Xsl
+l−

[12]

B
ex(B→Xsl

+l−)=
(
6.2±1.1+1.6

−1.3

)
×10−6, (13)

in Fig. 3 we display the corresponding 2σ experimen-

tal bounds on the size of zsb and phase θ. From this

figure, we obtain

|zsb|6 1.40×10−3 (95% C.L.). (14)

Fig. 3. The (|zsb|, θ) contour in Scenario A con-

strained by B
ex(B → Xsl

+l−). The dashed,

dotted lines correspond to 1σ and 2σ experi-

mental bounds of B→Xsl
+l− in (13), respec-

tively. The solid line denotes the experimental

central value 6.2×10−6. The region between

dot lines is allowed at 1σ level.

Now we turn to study the correlation of the

branching ratios of B→Xsγ
[13]

and B→Xsl
+l− pre-

dicted in VQM. Our numerical result shows that (1)

B (B→Xsγ) is not so sensitive to the phase, which

is not the case for B (B→Xsl
+l−) as stated earlier;

(2) within the experimental bounds of B → Xsl
+l−,

the corresponding branching ratio of B → Xsγ pre-

dicted in VQM is consistent with the current average

of the CLEO
[14]

and Belle
[15]

measurements

B
ex(B→Xsγ)= (3.3±0.4)×10−4. (15)

It is very interesting to analyze how the zero of

the forward-backward (FB) asymmetry (s0) is modi-

fied in VQM which is determined by equation

Re
[(

s0C
eff
9 +2C

eff
7γ

)
C

eff∗

10

]
= 0. (16)

Unlike the case of SM where C eff
10 is real, the coeffi-

cient C eff
10 is complex generally in VQM. Furthermore,

the contributions to C eff
9,10 from tree level FCNC dia-

gram

|C new
10 |≫ |C new

9 |, (17)

and subject to the constraints on zsb from B →
Xsl

+l−, |C new
10 | still can be larger |C SM

10 |, indicating

that C eff
10 can have large imaginary part. Therefore,

s0 in VQM will have large deviation from that in SM.
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Fig. 4. The (|zsb|, s0) contour in VQM subject

to the 1σ bounds of B
ex(B → Xsl

+l−). For

specified |zsb|, the phase θ effect on s0 is also

shown.

Fig. 4 indicates that, subject to the experimental

measurement for branching ratio of B → Xsl
+l−, the

zero point of FB asymmetry is very sensitive to the

parameters zsb and phase θ, especially in the region

0.6×10−3 < |zsb|< 1.2×10−3.

Considering that the B factories such as BaBar

and Belle are running, measurements for inclusive

and exclusive B decays with high precision are ex-

pected. Therefore, the VQM will be tested in the

near future.

We would like to thank Profs. T. Morumzi, Y.Y.

Keum, T. Yoshikawa and C.D. Lü for useful discus-
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