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Abstract A definition for the statistical significance of a signal in an experiment is proposed by establishing

a correlation between the observed p-value and the normal distribution integral probability, which is suitable

for both counting experiment and continuous test statistics. The explicit expressions to calculate the

statistical significance for both cases are given.
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1 Introduction

The statistical significance of a signal in an ex-

periment of particle physics is to quantify the degree

of confidence that the observation in the experiment

either confirm or disprove a null hypothesis H0, in

favor of an alternative hypothesis H1. Usually H0

stands for the known or background processes, while

the alternative hypothesis H1 stands for a new or a

signal process plus background processes with respec-

tive production cross section. This concept is very

useful for usual measurements that one can have an

intuitive estimation, to what extent one can believe

the observed phenomena are due to backgrounds or

a signal. It becomes crucial for the measurements

which claim a new discovery or a new signal. As a

convention in particle physics experiment, the “5σ”

standard, namely the statistical significance S > 5 is

required to define the sensitivity for discovery; while

in the cases S > 3 (S > 2), one may claim that the

observed signal has strong (weak) evidence.

However, as pointed out in Ref. [1], the concept

of the statistical significance has not been employed

consistently in the most important discoveries made

over the last quarter century. Also, the definitions of

the statistical significance in different measurements

differ from each other. Listed below are various defi-

nitions for the statistical significance in counting ex-

periment (see, for example, Refs. [2—4]):

S1 = (n−b)/
√

b, (1)

S2 = (n−b)/
√

n, (2)

S12 =
√

n−
√

b, (3)

SB1 = S1−k(α)
√

n/b, (4)

SB12 = 2S12−k(α), (5)

∫SN

−∞

N(0,1)dx=

n−1
∑

i=0

e−b bi

i!
, (6)

where n is the total number of the observed events,

which is the Poisson variable with the expectation

s+b, s is the expected number of signal events to be

searched, while b is the known expected number of

Poisson distributed background events. All numbers

are counted in the “signal region” where the searched

signal events are supposed to appear. In Eqs. (4)

and (5), k(α) is a factor related to α that the cor-

responding statistical significance assumes 1−α ac-

ceptance for positive decision about signal observa-

tion, and k(0.5) = 0, k(0.25) = 0.66, k(0.1) = 1.28,

k(0.05) = 1.64 etc.
[3]

. In Eq. (6), N(0,1) is a no-

tation for the normal function with the expectation

and variance equal to 0 and 1, respectively. On the
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other hand, the measurements in particle physics of-

ten examine statistical variables that are continuous

in nature. Actually, to identify a sample of events

enriched in the signal process, it is often important

to take into account the entire distribution of a given

variable for a set of events, rather than just to count

the events within a given signal region of values. In

this situation, I. Nasky
[4]

gives a definition of the sta-

tistical significance via likelihood function

SL =
√

−2lnL(b)/L(s+b) (7)

under the assumption that −2lnL(b)/L(s + b) dis-

tributes as χ2 function with degree of freedom of 1.

Upon the above situation, it is clear that we de-

sire to have a self-consistent definition for statisti-

cal significance, which can avoid the danger that the

same S value in different measurements may imply

virtually different statistical significance, and can be

suitable for both counting experiment and continuous

test statistics. In this letter we propose a definition of

the statistical significance, which could be more close

to the desired property stated above.

2 Definition of the statistical signifi-

cance

The p-value is defined to quantify the level of

agreement between the experimental data and a

hypothesis
[1, 5]

. Assume an experiment makes a mea-

surement for test statistic t being equal to tobs, and

t has a probability density function g(t|H0) if a null

hypothesis H0 is true. We futher assume that large

t values correspond to poor agreement between the

data and the null hypothesis H0, then the p-value of

an experiment would be

p(tobs)= P (t > tobs|H0)=

∫∞
tobs

g(t|H0)dt. (8)

A very small p-value tends to reject the null hypoth-

esis H0.

Since the p-value of an experiment provides a mea-

sure of the consistency between the H0 hypothesis

and the measurement, our definition for statistical

significance S relates with the p-value in the form of

∫S

−S

N(0,1)dx= 1−p(tobs), (9)

under the assumption that the null hypothesis H0

represents that the observed events can be described

merely by background processes. Because a small p-

value means a small probability of H0 being true, cor-

responds to a large probability of H1 being true, one

would get a large signal significance S for a small p-

value, and vice versa. The left side of Eq. (9) repre-

sents the probability of the normal distribution in the

region within ±S standard deviation (±Sσ), there-

fore, this definition conforms itself to the meaning of

that the statistical significance should have. In such

a definition, some correlated S and p-values are listed

in Table 1.

Table 1. The statistical significance S and cor-

related p-value.

S p-value

1 0.3173

2 0.0455

3 0.0027

4 6.3×10−5

5 5.7×10−7

6 2.0×10−9

3 Statistical significance in counting

experiment

A group of particle physics experiment involves

the search for new phenomena or signal by observ-

ing a unique class of events that can-not be described

by background processes. One can address this prob-

lem to that of a “counting experiment”, where one

identifies a class of events using well-defined crite-

ria, counts up the number of observed events, and

estimates the average rate of events contributed by

various backgrounds in the signal region, where the

signal events (if exist) will be clustered. Assume in

an experiment, the number of signal events in the sig-

nal region is a Poisson variable with the expectation

s, while the number of events from backgrounds is a

Poisson variable with a known expectation b without

error, then the observed number of events distributes

as the Poisson variable with the expectation s + b.

If the experiment observed nobs events in the signal
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region, then the p-value is

p(nobs) = P (n > nobs|H0)=
∞

∑

n=nobs

bn

n!
e−b = 1−

nobs−1
∑

n=0

bn

n!
e−b . (10)

Substituting this relation to Eq. (9), one immediately

has ∫S

−S

N(0,1)dx=

nobs−1
∑

n=0

bn

n!
e−b . (11)

Then, the signal statistical significance S can be eas-

ily determined. Comparing this equation with Eq.

(6) given by Ref. [4], we notice the lower limit of the

integral is different.

4 Statistical significance in continuous

test statistics

The general problem in this situation can be ad-

dressed as follows. Suppose we identify a class of

events using well-defined criteria, which are charac-

terized by a set of N observations X1,X2, · · · ,XN for

a random variable X . In addition, one has a hy-

pothesis to test that predicts the probability density

function of X , say f(X |θ), where θ = (θ1,θ2, · · · ,θk) is

a set of parameters which need to be estimated from

the data. Then the problem is to define a statistic

that gives a measure of the consistency between the

distribution of data and the distribution given by the

hypothesis.

To be concrete, we consider the random variable

X is, say, an invariant mass, and the N observa-

tions X1,X2, · · · ,XN give an experimental distribu-

tion of X . Assuming parameters θ = (θ1,θ2, · · · ,θk)≡
(θs;θb), where θs and θb represent the parameters

related to signal (say, a resonance) and backgrounds

contribution, respectively. We assume the null hy-

pothesis H0 stands for that the experimental distri-

bution of X can be described merely by the back-

ground processes, while the alternative hypothesis

H1 stands for that the experimental distribution of

X should be described by the backgrounds plus sig-

nal; namely, the null hypothesis H0 specifies the fixed

value(s) for a subset of parameters θs (the number of

fixed parameter(s) is denoted as r), while the alter-

native hypothesis H1 leaves the r parameter(s) free

to take any value(s) other than those specified in H0.

Therefore, the parameters θ are restricted to lie in

a subspace ω of its total space Ω. On the basis of

a data sample of size N from f(X |θ), we want to

test the hypothesis H0:θ belongs to ω. Given the ob-

servations X1,X2, · · · ,XN , the likelihood function is

L =
N
∏

i=1

f(Xi|θ). The maximum of this function over

the total space Ω is denoted by L(Ω̂); while within the

subspace ω the maximum of the likelihood function is

denoted by L(ω̂), then we define the likelihood-ratio

λ ≡ L(ω̂)/L(Ω̂). It can be shown that for H0 true,

the statistic

t≡−2lnλ≡ 2(lnLmax(s+b)− lnLmax(b)) (12)

is distributed as χ2(r) when the sample size N is

large
[6]

. In Eq. (12) we use Lmax(s+ b) and Lmax(b)

denoting L(Ω̂) and L(ω̂), respectively. If λ turns out

to be in the neighborhood of 1, the null hypothesis

H0 is such that it renders L(ω̂) close to the maximum

L(Ω̂), and hence H0 will have a large probability of

being true. On the other hand, a small value of λ will

indicates that H0 is unlikely. Therefore, the critical

region of λ is in the neighborhood of 0, corresponding

to a large value of statistic t. If the measured value

of t in an experiment is tobs, from Eq. (8) we have

p-value

p(tobs)=

∫∞
tobs

χ2(t;r)dt. (13)

Therefore, in terms of Eq. (9), we can calculate the

signal significance according to the following expres-

sion:∫S

−S

N(0,1)dx= 1−p(tobs)=

∫ tobs

0

χ2(t;r)dt. (14)

For the case of r = 1, we have
∫S

−S

N(0,1)dx=

∫ tobs

0

χ2(t;1)dt = 2

∫√
tobs

0

N(0,1)dx,

and immediately obtain

S =
√

tobs = [2(lnLmax(s+b)− lnLmax(b))]
1/2, (15)

which is identical to Eq. (7) given by Ref. [4].



334 p U Ô n � Ø Ô n ( HEP & NP ) 1 30 ò

5 Discussion and summary

In Section 2, the p-value defined by Eq. (8) is

based on the assumption that large t values corre-

spond to poor agreement between the null hypothesis

H0 and the observed data, namely, the critical region

of statistic t for H0 lies on the upper side of its distri-

bution. If the situation is such that the critical region

of statistic t lies on the lower side of its distribution,

then Eq. (8) should be replaced by

p(tobs)= P (t < tobs|H0)=

∫tobs

−∞

g(t|H0)dt, (16)

and the definition of statistical significance S ex-

pressed by Eq. (9) is still applicable. For the case

that the critical region of statistic t for H0 lies on

both lower and upper tails of its distribution, and one

determined from an experiment the observed t values

in both sides: tU
obs and tL

obs, then Eq. (8) should be

replaced by

p(tobs) = P (t < tL
obs|H0)+P (t > tU

obs|H0)=∫tL

obs

−∞

g(t|H0)dt+

∫∞
tU

obs

g(t|H0)dt. (17)

In summary, we proposed a definition for the sta-

tistical significance by establishing a correlation be-

tween the normal distribution integral probability

and the p-value observed in an experiment, which is

suitable for both counting experiment and continu-

ous test statistics. The explicit expressions to cal-

culate the statistical significance for counting exper-

iment and continuous test statistics in terms of the

Poisson probability and likelihood-ratio are given.
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