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Abstract We study the global bipartite entanglement of the three-qubit Heisenberg XXX spin chain with

impurity. Through calculating the negativities N1-23 and N12-3, we show that the critical temperature Tc

above which the entanglement vanishes increases with the increase of the impurity parameterJ1. For a given

T , the corresponding critical impurity parameterJ1c below which the entanglement vanishes increases with the

increase of the magnetic field B, and by adjusting J1 and B one can control the values of N1-23 and N12-3.

The maximum value of N12-3 decreases from 0.5 to 0.3727 as the temperature rises, but the one of N1-23 keeps

the constant value of about 0.4714.
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1 Introduction

Quantum entanglement, which has no classical

analog, is one of the most notable features of quan-

tum mechanics. It provides a new perspective for

the analysis of correlations and transitions in many-

body quantum systems
[1, 2]

. And more importantly, it

also provides a key resource in realizing quantum in-

formation, such as quantum teleportation
[3, 4]

, quan-

tum key distribution
[5]

, super-dense coding
[6]

, quan-

tum cloning
[7]

et al. In particular, as an important en-

tanglement resource in the field of condensed-matter-

physics, the Heisenberg spin system has also been

used to construct a quantum computer and quantum

dots
[8]

. Consequently, it has been extensively studied

in recent years
[9—14]

.

However, as far as we know, most discussions men-

tioned above only focused on the calculation and anal-

ysis of the concurrence C, which measures the en-

tanglement between any and only two qubits. Re-

cently, N. Canosa and R. Rossignoli
[15]

discussed the

global bipartite entanglement in the XXZ chains with

another measurement named negativity
[16]

associated

with bipartitions of the whole system into two sub-

systems. Nagativity is a measure of the degree of

violation of the criterion of positive partial trans-

pose(PPT) in entangled states and is sufficient just

for two-qubit or qubit+qutrit systerm. Moreover, im-

purity and magnetic filed play an important role in

the 1D quantum system
[17, 18]

, so it is meaningful to

investigate the global bipartite entanglement of the

Heisenberg chain with impurity.

In this paper, we consider the global bipartite en-

tanglement in the three-qubit Heisenberg XXX chain

with impurity in the presence of a uniform magnetic

field B. Our paper is organized as follows. In Sec. 2

we give the analytical solution of the model. In Sec. 3,

we analyze the ground-state entanglement, obtain the

exact expressions of the negativities N1-23 and N12-3

at finite temperature without magnetic field B, and
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also we give the numerical solution of thermal entan-

glement. Finally, in Sec. 4, we give a conclusion of

this paper.

2 Solution of the model

We assume the impurity spin is located at the

first site and impose the periodic boundary condition,

then the corresponding Hamiltonian can be written as

H = J1(σ1 ·σ2 +σ3 ·σ1)+Jσ2 ·σ3 +B
∑3

i=1
σz

i , (1)

where J1 denotes the coupling between the normal

site and the impurity site and J denotes that be-

tween the normal sites. In the standard basis {|00〉,
|01〉, |10〉, |11〉}, the eigenvalues of the Hamiltonian

(1) are analytically obtained as

E1,2 =−3J±B, E3,4 = J−4J1±B,
E5,6 = 2J1 +J±B, E7,8 = 2J1 +J±3B,

(2)

with the corresponding eigenstates

|ψ1〉=
1√
2
(|010〉−|001〉),

|ψ2〉=
1√
2
(|110〉−|101〉),

|ψ3〉=
1√
6
(|001〉+ |010〉−2|100〉),

|ψ4〉=
1√
6
(2|011〉−|101〉−|110〉),

|ψ5〉=
1√
3
(|001〉+ |010〉+ |100〉),

|ψ6〉=
1√
3
(|011〉+ |101〉+ |110〉),

|ψ7〉= |000〉,

|ψ8〉= |111〉.

(3)

Let ρ be the density matrix, then the global bi-

partite entanglement between the subsystem of {1}
and {2,3} and the one between that of {3} and {1,2}
can be measured by means of the negativity

[15, 19, 20]

N1-23 = (||ρt1-23 ||−1)/2 or
∑

i
|(µ1-23)i|,

N12-3 = (||ρt12-3 ||−1)/2 or
∑

i
|(µ12-3)i|,

(4)

where ρt1-23(ρt12-3) denotes the partial transpose (PT)

of ρ, and ||ρt1-23 ||(||ρt12-3 ||) denotes the trace norm of

ρt1-23(ρt12-3). (µ1-23)i ((µ12-3)i) is the negative eigen-

values of ρt1-23(ρt12-3) and 1-23 (12-3) denotes the bi-

partition of the system.

In the next section we will give our results, where

we only consider the case of J >0 and B >0 because

it is easy to find from Eq. (2) that the entanglement

is invariant under the substitution B→−B.

3 Results and discussion

3.1 Bipartite entanglement of the ground

states

To see the dependence of the global bipartite en-

tanglement on the impurity parameter J1 and the

magnetic field B at the ground states, we give our

calculation results in Table 1. First we consider the

case of B=0. Obviously, the impurity enhances the

entanglement when J1 > J . But when J1 < J , it de-

creases N1-23 to zero, but may increase N12-3 to its

maximum value 0.5 (when J >J1>−2J) or may de-

crease it to zero (when J1 > −2J). For a given J1,

the influences of B on N1-23 and N12-3 are similar: it

may enhance bipartite entanglement when B < Bc,

suppress entanglement at B = Bc, but destroy the

entanglement completely when B>Bc, where Bc is a

critical value which is associated with J1. So we can

control bipartite entanglement via adjusting J1 and

B.
Table 1. The dependence of the negativities

N1-23 and N12-3 on J1 and B at ground states.

J1 B >0 N1-23 N12-3

B=0 0.3333 0.2676

0 <B < 3J1 0.4714 0.3727
J1 > J

B =3J1 0.0936 0.0618

B > 3J1 0 0

B=0 0.1667 0.1667

0 < B < 3J 0.2357 0.2357
J1 = J

B = 3J 0.0624 0.0624

B > 3J 0 0

B < J1 +2J 0 0.5

−2J < J1 < J B = J1 +2J 0 0.1036

B > J1 +2J 0 0

J1 6−2J B >0 0 0

3.2 Thermal entanglement

After analyzing the global bipartite entanglement

in the ground states at zero absolute temperature,

we turn to the more realistic case of thermal entan-

glement. For a system with temperature T at thermal

equilibrium, the density matrix can be written as

ρ(T ) =Z−1 exp(−H/T ), (5)
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where the partition function Z = Tr[exp(−H/T )] and

the Boltzmann’s constant is set to 1 for simplicity.

First we consider the analytical solutions of N1-23

and N12-3 at B=0. From Eq. (4), one can obtain the

negativities N1-23 and N12-3

N1-23 =







0 J1 6 (ln2)T/3,

4(2c−b)/3Z J1 > (ln2)T/3,
(6)

N12-3 =







0 µ6 0,

2µ µ> 0,
(7)

where

a= exp(3J/T )/2,

b= exp[(4J1−J)/T ]/6,

c= exp[(−2J1−J)/T ]/3,

µ= (
√

13b2−10bc+4c2−2ac+a2−2ab−2b−2c)/Z.

(8)

Next we consider the numerical results where we

have set J to 1 for simplicity. Fig. 1 gives the crit-

ical temperature Tc above which the entanglement

vanishes as a function of J1. It is clear that Tc1-23

linearly increases with the increase of J1, which can

also get from Eq. (6). But Tc12-3 initially increases

then almost keeps unchanged with the increase of J1

when −2J < J1 < J and increases with the increase

of J1 when J1>J .

Fig. 1. The critical temperature plotted as a

function of J1(B=0) for bipartitions: 1-23 and

12-3. The parameter J=1.

Figure 1 also shows there exists a corresponding

critical impurity parameter J1c below which the bi-

partite entanglement vanishes for a given T and this

critical value increases with the increase of T . These

results show that the impurity can be used as a switch

to turn on or turn off the bipartite entanglement.

Then we consider the negativity as a function of

J1 at different temperatures T . Fig. 2(a) shows that

when the temperature is low enough, N12-3 initially

increases to a upper limited value N1 at J1=0, then

decreases to a lower limited value N2 and finally in-

creases to a asymptotic value Na with the increase of

J1. The values N1 and N2 decrease to zero gradually

as the temperature rises, but the asymptotic value is

independent of the temperature (see T=0.5, 1.5, 2.5,

3.5, 4.5 in Fig. 2(a)). This means that for a given T ,

one can control N12-3 to obtain its maximum value

via adjusting J1, and this maximum value decreases

from 0.5 to 0.2676 and then almost keeps unchanged

as the temperature rises. From Fig. 2(b), one can ob-

serve that at any fixed temperature, N1-23 increases

with the increase of J1 and reaches its maximum value

when J1 is large enough. Generally, the higher the

temperature is, the smaller the N1-23 is for a given

J1 (see T=1.5, 2.5, 3.5, 4.5 in Fig. 2(b)). But when

T is low enough (see T=0.5 and 1.5 in Fig. 2(b)), a

higher temperature may correspond to a larger N1-23

if J1 is within a special value. Comparing Fig. 2(a)

with Fig. 2(b), the variations of N12-3 and N1-23 with

the increase of J1 have significant differences when

T is low enough, and these differences narrow down

gradually with the rise of the temperature.

Fig. 2. The negativities N12-3 (a) and N1-23 (b)

as a function of the impurity parameter J1.

The parameter J=1.
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Now we consider the global bipartite entangle-

ment in the presence of a uniform magnetic filed B.

Fig. 3 gives the plots of N12-3 and N1-23 as a function

of J1 and B for T=0.5 and T=10. It is clear that for

a particular fixed B, the behaviors of N12-3 and N1-23

are similar to that of the B=0 case.

Fig. 3. The negativities N1-23 and N12-3 as a

function of J1 and B for T=0.5 (the upper

two figures) and 10 (the lower two figures).

The parameter J=1.

When the temperature is fixed, the influences of

the magnetic filed B on N12-3 and N1-23 are similar

for a given J1. When J1 is within a threshold value,

the negativity decreases to zero with the increase of

B. When J1 exceeds this value, the negativity first

increases and then decreases to zero with the increase

of B. These results show that one can control N12-3

and N1-23 to their corresponding maximum values via

adjusting J1 and B. Moreover, the maximum value

is independent of the temperature with the exception

of N12-3 at low temperature. From Fig. 3, one also

can observe that for a given temperature, the corre-

sponding critical impurity parameter J1c keeps nearly

unchanged when B is within a special value and in-

creases with the increase of B when B exceeds this

critical value. Furthermore, we give the plot of J1c

as a function of B for T=0.5 and T=10 in Fig. 4 for

visualization.

Fig. 4. The critical impurity parameter J1c as

a function of B for a given temperature: (a)

T=0.5; (b) T=10.

4 Conclusion

In this paper, we investigate the global bipartite

entanglement in the three-qubit Heisenberg XXX spin

chain with impurity. We give the exact results of

N12-3 and N1-23 at zero absolute temperature and nu-

merical solutions at finite temperature. We show the

critical temperature Tc above which the entanglement

vanishes increases with the increase of the impurity

parameter J1. For a given T , the corresponding crit-

ical J1c increases with the increase of the magnetic

filed B. The impurity can be used as a switch to

turn on or turn off the bipartite entanglement, and

a proper B can enhance the bipartite entanglement.

Moreover, for a given T , one can control bipartite en-

tanglement via adjusting J1 and B, and furthermore,

the maximum value of N12-3 decreases from 0.5 to

0.3727 as the temperature rises, but the one of N1-23

keeps the constant value of about 0.4714.
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