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Abstract We explore the NJL model with Polyakov loops for a system of three colors and two flavors within

the mean-field approximation, where both chiral symmetry and confinement are taken into account. We focus

on the phase structure of the model and study the chiral and Polyakov loop susceptibilities.
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1 Introduction

Low-energy phenomena of QCD have been studied

in various effective models based on chiral symmetry.

However, the relation of spontaneous chiral symmetry

breaking and confinement remains an open issue. Re-

cently, color degrees of freedom were introduced in the

Nambu-Jona-Lasinio (NJL) Lagrangian
[1, 2]

through

an effective gluon potential expressed in terms of

Polyakov loops (PNJL model)
[3, 4]

. The basic ingre-

dients of the model are constituent quarks and the

Polyakov loop, which is an order parameter of the

Z(3) symmetry of QCD in the heavy quark limit. The

model has a non-vanishing coupling of the constituent

quarks to the Polyakov loop and mimics confinement

in the sense that only three-quark states contribute

to the thermodynamics in the low-temperature phase.

Hence, the PNJL model yields a better description of

QCD thermodynamics near the phase transition than

the NJL model. Furthermore, due to the symmetries

of the Lagrangian, the model belongs to the same

universality class as that expected for QCD. Thus,

the model can be considered as a testing ground for

the critical phenomena related to the breaking of the

global Z(3) and chiral symmetries.

It has been shown that the PNJL model, formu-

lated at finite temperature and finite quark chemical

potential, well reproduces some of the thermodynam-

ical observables computed within lattice gauge theory

(LGT). The properties of the equation of state
[4]

, the

in-medium modification of meson masses
[5]

as well as

the validity and applicability of the Taylor expan-

sion in quark chemical potential used in LGT were

recently addressed within the PNJL model
[6—9]

. In

Ref. [10] the model was extended to a system with fi-

nite isospin chemical potential and pion condensation

was studied.

Enhanced fluctuations are characteristic for phase

transitions. Thus, the exploration of fluctuations is

a promising tool for probing the phase structure of

a system. The phase boundaries can be identified by

the response of the fluctuations to changes in the ther-

modynamic parameters. In this article we describe

the susceptibilities of the order parameters and their

properties in the PNJL model following Ref. [11].
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2 Nambu-Jona-Lasinio model with

Polyakov loops

An extension of the NJL Lagrangian by cou-

pling the quarks to a uniform temporal background

gauge field, which manifests itself entirely in the

Polyakov loop, has been proposed to account for in-

teractions with the color gauge field in effective chiral

models
[3, 4]

. The PNJL Lagrangian for three colors

(Nc=3) and two flavors (Nf=2) with non-local four-

fermion interactions is given by

L = ψ̄(iγµDµ−m̂)ψ+ ψ̄µ̂γ0ψ−U (Φ[A], Φ̄[A];T )+

GS

2

[

(q̄(x)q(x))
2
+(q̄(x)iγ5τq(x))

2
]

, (1)

where m̂ = diag(mu,md) is the current quark mass,

µ̂= diag(µu,µd) is the quark chemical potential and τ

are the Pauli matrices. We assume isospin symmetry

and take mu =md ≡m0 and µu =µd ≡µ.

Here we have introduced non-local interactions

which are controlled by a form factor in order to deal

with the ultraviolet singularities that appear in the

loop integrations. In coordinate space, the form fac-

tor F (x) for the non-local current-current interaction

reads:

q(x) =

∫
d4yF (x−y)ψ(y) . (2)

A possible choice for the regulator is in momentum

space given by
[12]

:

f 2(p) =
1

1+(p/Λ)2α
, (3)

where f(p) is the Fourier transform of the form factor

F (x) and p is the three-momentum. The NJL sec-

tor is controlled by four parameters: the strength of

four-fermion interaction GS, the current quark mass

m0 and the constants α and Λ, which characterize the

range of the non-locality. These parameters are de-

termined in vacuum, for a given α, by requiring that

the experimental values of the pion parameters and

the quark condensate are reproduced.

The interaction between the effective gluon field

and the quarks in the PNJL Lagrangian is imple-

mented (1) by means of a covariant derivative

Dµ = ∂µ−iAµ , Aµ = δµ0A
0 , (4)

where we introduce the standard notation Aµ =

gAa
µ

λa

2
. Here g is the color SU(3) gauge coupling

constant and λa are the Gell-Mann matrices.

The effective potential U of the gluon field in

Eq. (1) is expressed in terms of the traced Polyakov

loop Φ and its conjugate Φ̄

Φ=
1

Nc

TrcL, Φ̄=
1

Nc

TrcL
† , (5)

where L is a matrix in color space related to the gauge

field by

L(x) = P exp

[

i

∫β

0

dτA4(x, τ)

]

, (6)

with P being the path (Euclidean time) ordering,

and β= 1/T with A4 = iA0. In the heavy quark mass

limit, QCD has the Z(3) center symmetry which is

spontaneously broken in the high-temperature phase.

The thermal expectation value of the Polyakov loop

〈Φ〉 acts as an order parameter of the Z(3) symme-

try. Consequently, 〈Φ〉 = 0 at low temperatures in

the confined phase and 〈Φ〉 6= 0 at high temperatures

corresponding to the deconfined phase.

The effective potential U (Φ,Φ̄) of the gluon field

is expressed in terms of the Polyakov loops so as

to preserve the Z(3) symmetry of the pure gauge

theory[13]. We adopt an effective potential of the fol-

lowing form
[4]

:

U (Φ,Φ̄;T )

T 4
=−

b2(T )

2
Φ̄Φ−

b3
6

(Φ3+Φ̄3)+
b4
4

(Φ̄Φ)2 , (7)

with

b2(T ) = a0 +a1

(

T0

T

)

+a2

(

T0

T

)2

+a3

(

T0

T

)3

. (8)

The coefficients T0, ai and bi are fixed by requiring

that the equation of state obtained in pure gauge the-

ory on the lattice is reproduced. In particular, at

T0=270MeV the model reproduces the first order de-

confinement phase transition of the pure gauge the-

ory.

3 Susceptibilities and the phase struc-

ture

In the PNJL model the constituent quarks and

the Polyakov loops are effective fields related with

the order parameters for the chiral and Z(3) sym-

metry breaking. In LGT the susceptibilities associ-

ated with these fields show clear signals of the phase



1 12 Ï C. Sasaki et alµFluctuations and the Phase Transition in a Chiral Model with Polyakov Loops 1143

transitions
[14]

.

In Fig. 1 we show the chiral χmm and Polyakov

loop χl̄l = 〈Φ̄Φ〉−〈Φ̄〉〈Φ〉 susceptibilities computed at

µ = 0 in the PNJL model in the chiral limit within

the mean field approximation.

The chiral susceptibility exhibits a very narrow

divergent peak at the chiral critical temperature Tch,

while the peak of χl̄l is much broader and the sus-

ceptibility remains finite at all temperatures. This is

due to the explicit breaking of the Z(3) symmetry by

the presence of quark fields in the PNJL Lagrangian.

Nevertheless, χl̄l still exhibits a peak structure that

can be considered as a signal for the deconfinement

transition in this model. One finds the interference

of χl̄l with χmm in Fig. 1: At the chiral transition,

T =Tch, there is a narrow structure in χl̄l. We stress

that this feature is not related with the deconfine-

ment transition, but expresses the coupling of quarks

to the Polyakov loops. Thus, for the parameters used

in the model, the deconfinement transition, signaled

by the broad bump in χl̄l, sets in earlier than the

chiral transition at vanishing net quark density.

Fig. 1. The chiral χmm (dashed-line) and the

Polyakov loop χl̄l (solid-line) susceptibilities

in the chiral limit as functions of temperature

T for µ = 0.

The peak positions of the χmm and χl̄l suscepti-

bilities determine the phase boundaries in the (T,µ)-

plane. At finite chemical potential, there is a shift

of the chiral phase transition to lower temperatures.

In Fig. 2 we show the resulting phase diagram for

the PNJL model. The boundary lines of deconfine-

ment and chiral symmetry restoration do not coin-

cide. There is only one common point in the phase

diagram where the two transitions appear simultane-

ously.

Recent LGT results both at vanishing and at fi-

nite quark chemical potential show that deconfine-

ment and chiral symmetry restoration appear in QCD

along the same critical line
[14]

. In general it is possi-

ble to choose the PNJL model parameters such that

the both critical temperatures coincide at µ= 0.

Fig. 2. The phase diagram of the PNJL model

in the chiral limit. The solid (dashed) line de-

notes the chiral (deconfinement) phase tran-

sition respectively. The TCP (bold-point) is

located at (Tc=157, µc=266)MeV.

From Fig. 2 one finds that the slope of Tdec as

a function of µ is almost flat, indicating that at low

temperature the chiral phase transition should appear

much earlier than deconfinement. However, there are

general arguments, that the deconfinement transition

should precede restoration of chiral symmetry (see

Refs. [15, 16]). In view of this, it seems unlikely that

at T ' 0 the chiral symmetry sets in at the lower

baryon density than deconfinement. In the PNJL

model, the parameters of the effective gluon poten-

tial were fixed by fitting quenched LGT calculations.

Consequently, the parameters are taken as indepen-

dent on µ. However, it is conceivable that the ef-

fect of dynamical quarks can modify the coefficients

of this potential, thus resulting in µ-dependence of

the parameters. Consequently, the slope of Tdec as a

function of µ could be steeper1). Consequently, the

effective Polyakov loop potential Eq. (7) should, with

µ-independent coefficients, be considered as a good

approximation only for µ/T < 1.

While the susceptibilities χmm and χl̄l exhibit ex-

pected behaviors associated with the phase transi-

tions, other Polyakov loop susceptibilities,

χll = 〈Φ2〉−〈Φ〉2 , χl̄̄l = 〈Φ̄2〉−〈Φ̄〉2 , (9)

are negative in a broad temperature range above

Tch
[11]

. This is in disagreement with recent lattice

results, where χll is always positive in the presence

1) Such a modification was explored in Ref. [17] where explicit µ- and Nf -dependence of T0 is extracted from the running

coupling constant αs, using the argument based on the renormalization group.
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of dynamical quarks
[14]

. A possible origin of this be-

havior could be the approximation to the effective

Polyakov loop potential used in the Eq. (7).

Recently an improved effective potential with

temperature-dependent coefficients has been sug-

gested
[7]

U (Φ,Φ̄;T )

T 4
= −

a(T )

2
Φ̄Φ+b(T ) ln

[

1−6Φ̄Φ+

4
(

Φ3 + Φ̄3
)

−3
(

Φ̄Φ
)2 ]

, (10)

where

a(T ) = a0+a1

(

T0

T

)

+a2

(

T0

T

)2

, b(T ) = b3

(

T0

T

)3

,

(11)

The polynomial in Φ and Φ̄, used in Eq. (7), is re-

placed by a logarithmic term, which accounts for the

Haar measure in the group integral. The parame-

ters in Eq. (10) were fixed to reproduce the lattice

results for pure gauge QCD thermodynamics and for

the behavior of the Polyakov loop. In Fig. 3 we show

the χll susceptibility calculated with the potential of

Eq. (10).

Fig. 3. The χll = χl̄̄l susceptibility in the chiral

limit as a function of temperature T for µ =0.

The effective Polyakov loop potential Eq. (10)

was used.

The improved potential indeed yields positive val-

ues for all the Polyakov loop susceptibilities. We note

that the phase diagram calculated with the improved

potential is similar to that obtained with the previ-

ous choice of the Polyakov loop interactions, shown

in Fig. 3.

4 Summary and discussions

We introduced susceptibilities related with the

three different order parameters in the PNJL model,

and analyzed their properties and their behavior near

the phase transitions. In particular, for the quark-

antiquark and chiral density-density correlations we

have discussed the interplay between the restoration

of chiral symmetry and deconfinement. We observed

that a coincidence of the deconfinement and chiral

symmetry restoration is accidental.

We found that, within the mean field approxi-

mation and with the polynomial form of an effec-

tive gluon potential the correlations of the Polyakov

loops in the quark-quark channel show an unphys-

ical behavior, being negative in a broad parameter

range. This behavior was traced back to the param-

eterization of the Polyakov loop potential. We ar-

gue that the Z(N)-invariance of this potential and

the fit to lattice thermodynamics in the pure gluon

sector is not sufficient to provide correct description

of the Polyakov loop fluctuations. Actually it was

pointed out
[7]

that the polynomial form used in this

work does not possess the complete group structure

of color SU(3) symmetry. The improved potential of

Ref. [7] yields a positive, i.e. physical, χll susceptibil-

ity, in qualitative agreement with the LGT results.
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