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Abstract Integrated two particle correlation functions have been extracted from charge particle multiplicity

density fluctuations in pseudorapidity space by analyzing Au+Au collision events at
√

sNN = 200GeV taken

by RHIC-PHENIX. The correlation lengths as a function of the number of participants Np indicate a non

monotonic increase at around Np =100 and the corresponding energy density based on the Bjorken picture is

ε
Bj

τ ∼ 2.5GeV·fm−2. This could be a symptom of a critical behavior.
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1 Introduction

For the understanding of the QCD phase diagram,

it is important to establish tools to determine criti-

cal systems in general. As one of such observables,

increases of spatial correlation lengths as a function

of system energy density can be a robust signature

to determine critical systems whatever the transition

order is. Based on the following advocated observ-

ables, Au+Au collision events taken by the PHENIX

detector
[1]

at
√

sNN = 200GeV have been analyzed

and the present results are summarized by focusing

on whether critical behaviors of the phase transition

exist or not as a function of the number of partici-

pants Np which reflects the system energy density
[2]

.

2 Density fluctuation and phase tran-

sition

In order to relate the density fluctuations with

the phase transition in the simplest form, Ginzburg-

Landau(GL)
[3]

theory with the Ornstein-Zernike

picture
[4]

for a scalar order parameter is briefly re-

viewed. The first attempt to apply the free energy

discussion to nucleus-nucleus collisions can be found

in Ref. [5]. GL describes the relation between a free

energy density f and an order parameter φ as a func-

tion of system temperature T . By adding a spatially

inhomogeneous term (∇φ)2 and an external field h,

the general form is described as follows;

f(T,φ,h) = f0(T )+
1

2
A(T )(∇φ)2 +

1

2
a(T )φ2 +

1

4
bφ4 + · · ·−hφ , (1)

where terms with odd powers are neglected due to the

symmetry of the order parameter and the sign of b is

used to classify the transition orders; b < 0 for first

order, b > 0 for second order and b = 0 for the critical

point. Since the order parameter should vanish above

critical temperature Tc, it is natural for the coefficient

a(T ) to be expressed as a(T ) = a0(T −Tc), while b is

usually assumed to be constant in the vicinity of Tc.

In the following analysis, the order parameter cor-

responds to the multiplicity density fluctuation from

the mean density as a function of one dimensional

rapidity point y, which is defined as

φ(y) = ρ(y)−〈ρ〉 , (2)

where a pair of brackets is an operator to take the

average. With the Fourier expansion of the density

fluctuation φ(y) =
∑

k
φkeiky where k is wave num-

ber, one can express the deviation of the free energy
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density ∆F/Y due to spatial fluctuations from the

equilibrium value as

∆F/Y =
1

Y

∫
(f −f0)dy =

1

2

∑

k

|φk|2(a(T )+A(T )k2),

(3)

where Y is the total rapidity range corresponding to

one dimensional volume and up to the second order

terms are taken into account as an approximation in

the vicinity of the critical point in Eq. (1). Given

the free energy deviation, one can obtain the statisti-

cal weight w for fluctuation φ(y) to occur in a given

temperature T

w(φ(y)) = Ne−∆F/T . (4)

Therefore the statistical average of the square of the

density fluctuation with the wave number k is de-

scribed as

〈|φk|2〉 =

∫+∞

−∞

|φk|2w
(

∑

k

φke
iky

)

dφk =

NT

Y

1

a(T )+A(T )k2
. (5)

Experimentally observable two point density cor-

relation function can be related to the statistical av-

erage of the square of the density fluctuation. With a

density ρ(yi) for a given sub volume dyi, the general

two point density correlation G2 is expressed as

G2(y1,y2) = 〈(ρ(y1)−〈ρ〉)(ρ(y2)−〈ρ〉)〉, (6)

where the case that 1 coincides with 2 is excluded

to simplify the following discussion. Multiplying

e−iky ≡ e−ik(y2−y1) to the both sides of Eq. (6) and

integrating over sub volume dy1 and dy2 gives

Y

∫
G2(y)e−ikydy = 〈|

∫
(ρ(y)−〈ρ〉)e−ikydy|2〉= 〈|φk|2〉.

(7)

From Eq. (5) and (7), G2 can be obtained by the in-

verse Fourier transformation of 〈|φk|2〉. Therefore in

the one dimensional case G2 is described as

G2(y) =
NT

2Y 2A(T )
ξ(T )e−|y|/ξ(T ) , (8)

where a correlation length ξ(T ) is introduced, which

is defined as

ξ(T )2 =
A(T )

a0(T −Tc)
. (9)

In general, a singular behavior of ξ(T ) as a function of

T indicates the critical point of the phase transition.

3 Experimental observables

In the following analysis the density fluctuation is

discussed via the charged particle multiplicity distri-

butions as a function of the pseudo-rapidity interval

of δη for each collision centrality. Let us introduce

one and two particle inclusive multiplicity densities

ρ1 and ρ2 based on the inclusive differential cross sec-

tion with respect to the total inelastic cross section

σinel as follows
[6]

1

σinel

dσ = ρ1(η)dη ,

1

σinel

d2σ = ρ2(η1,η2)dη1dη2 . (10)

With these densities, a two particle density correla-

tion function is defined as

C2(η1,η2) = ρ2(η1,η2)−ρ1(η1)ρ1(η2) . (11)

The mathematical connection between second order

normalized factorial moment F2 and the two particle

correlation function is expressed as
[7]

F2(δη) =
〈n(n−1)〉

〈n〉2 =

∫∫
δη

ρ2(η1,η2)dη1dη2

{∫
δη

ρ1(η)dη

}2 =

1

(δη)2

∫∫
δη C2(η1,η2)

ρ̄2
1

dη1dη2 +1 , (12)

where n is the number of produced particles, δη is the

rapidity interval which defines the measurable range

of |η1−η2|, ρ̄1 is the average number density per unit

length within δη which is defined as

ρ̄1 =
1

δη

∫
δη

ρ1(η)dη . (13)

The two particle correlation function C2 can be

parametrized based on the one dimensional function

form obtained in Eq. (8). However, one has to bear

in mind that the damping behavior in Eq. (8) is origi-

nated only from the spatial inhomogeneity of the sys-

tem in a fixed temperature. In many experimental

conditions, the initial system temperature can not be

specified as a point. For instance, corresponding tem-

perature is indirectly discussed by relating it with the

collision centrality. The centrality bin has a finite size

and it causes fluctuations originating from the finite

temperature bin size. In principle this kind of fluctua-
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tions must be independent of the spatial fluctuations.

Therefore the general function form for the normal-

ized two particle correlation function in the one di-

mensional analysis can be parameterized as follows

which explicitly contains a constant term β;

C2(η1,η2)

ρ̄1
2

= αe−δη/ξ +β , (14)

where ρ̄1 is proportional to the mean multiplicity in

each centrality.

Instead of F2 itself, we will use an indirect param-

eter k of the Negative Binomial Distribution (NBD)

in the following analysis which is defined as

Pk,µ(n) =
Γ (n+k)

Γ (n−1)Γ (k)

(

µ/k

1+µ/k

)

1

1+µ/k
, (15)

where µ corresponds to the mean value and k−1 re-

flects deviations from the completely random case i.e.

the Poisson distribution which corresponds to k =∞.

Intuitively k−1 is a measure how strongly particles

are correlated. The mathematical relation between k

and F2 is expressed as
[8]

k−1 = F2−1 . (16)

The reason why we adopt NBD rather than F2 is that

NBD can provide an approximate probability distri-

bution which enables us to estimate how inefficient

or dead areas of the detector system bias the k pa-

rameter and to obtain the true value of k based on

the estimation, while factorial moment itself does not

provide any specific models on the distribution func-

tion which resulted the observed factorial moment.

As the result, the relation between the NBD k pa-

rameter and the pseudo-rapidity interval δη for the

parametrization given in Eq. (14) is expressed as

k−1(δη) = F2−1 =
2αξ2(δη/ξ−1+e−δη/ξ)

δη2
+β . (17)

4 Analysis result

Figure 1 shows corrected NBD k parameters as a

function of pseudo-rapidity interval sizes for central-

ity classes indicated inside the figure. The upper and

lower two panels correspond to 10% and 5% central-

ity bin width cases, respectively. The vertical error

bars show the statistical errors and boxes show the

systematic errors which come from correction factors

on k due to the possible variation of dead or inef-

ficient areas in the tracking detector. The solid line

indicates the fit result by using Eq. (17) with errors of

quadratic sum of the statistical and systematic errors.

The fit was performed from 0.02 to 0.7 in pseudo-

rapidity. The lowest centrality bin was determined

as 55%—65%. The fits are remarkably well resulting

reduced χ2 of 0.44 at the worst which corresponds to

above 99% confidence level. This guarantees that the

parametrization is actually reasonable.

Fig. 1. k vs δη in each centrality class.

Figure 2(a), (b) and (c) show obtained fit pa-

rameters α, β and ξ as a function of the number of

Fig. 2. α, β and ξ as a function of Np.
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participants Np where results for both 10% and 5%

centrality bin width cases are plotted as red and blue

circles respectively. Np was obtained from the cen-

trality classes based on the Glauber model which is

explained in Ref. [9] in detail. The horizontal errors

correspond to ambiguities on the mean values of Np

when the centralities are mapped upon Np. The ver-

tical error bars are obtained from errors on the fitting

parameter by the Minuit program.

5 Summary

The multiplicity distributions measured in Au+

Au collisions at
√

sNN=200GeV are found to be

well described by the negative binomial distribu-

tion. The two point correlation lengths have been

extracted based on the function form by relat-

ing pseudo-rapidity density fluctuations and the

Ginzburg-Landau theory up to the second order term

in the free energy with the scalar order parameter.

The function form can fit k vs. δη in all centralities

remarkably well. The correlation lengths as a func-

tion of the number of participants Np indicate a non

monotonic increase at around Np = 100 and the corre-

sponding energy density based on the Bjorken picture

is εBjτ ∼ 2.5GeV·fm−2 which has been measured by

PHENIX
[2]

. It is interesting to note that the energy

density coincides with the one where the first drop of

J/ψ suppression from the normal nuclear absorption

was observed at SPS
[10]

.
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