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Abstract We briefly discuss the phenomenological theory of dissipative fluid. We also present some numerical

results for hydrodynamic evolution of QGP fluid with dissipation due to shear viscosity only. Its effect on

particle production is also studied.
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1 Introduction

A large volume of experimental data from Au+Au

collisions at RHIC are successfully analysed in an

ideal fluid dynamic model
[1]

. However, experimen-

tal data do show deviation from ideal behavior. The

ideal fluid description works well in almost central

Au+Au collisions near mid-rapidity at top RHIC en-

ergy, but gradually breaks down in more peripheral

collisions, at forward rapidity, or at lower collision

energies
[2]

, indicating the onset of dissipative effects.

To describe such deviations from ideal fluid dynam-

ics, quantitatively, requires the numerical implemen-

tation of dissipative relativistic fluid dynamics.

Though the theories of dissipative hydrodyna-

mics
[3—5]

has been known for more than 30 years,

significant progress towards its numerical implemen-

tation has only been made very recently
[6—10]

. In the

following, I will briefly review the phenomenological

theory of dissipative hydrodynamics. Some numeri-

cal results comparing the ideal and 1st order dissi-

pative hydrodynamics, obtained using the computer

code AZHYDRO-KOLKATA
[10]

will be shown.

2 Phenomenological theory of dissipa-

tive hydrodynamics

In this section, I briefly discuss the phenomeno-

logical theory of dissipative hydrodynamics. More

detailed exposition can be found in Ref. [5].

A simple fluid, in an arbitrary state, is fully spec-

ified by primary variables: particle current (Nµ),

energy-momentum tensor (T µν) and entropy current

(Sµ) and a number of additional (unknown) variables.

Primary variables satisfies the conservation laws;

∂µ Nµ = 0 , (1)

∂µ T µν = 0 , (2)

and the 2nd law of thermodynamics,

∂µ Sµ
> 0 . (3)

In relativistic fluid dynamics, one defines a time-

like hydrodynamic 4-velocity, uµ (normalised as u2 =

1). One also define a projector, ∆µν = gµν −uµuν ,

orthogonal to the 4-velocity (∆µνuν = 0). In equi-

librium, an unique 4-velocity (uµ) exists such that

the particle density (n), energy density (ε) and the

entropy density (s) can be obtained from,

Nµ
eq = nuµ , (4)

T µν
eq = εuµuν −p∆µν , (5)

Sµ
eq = suµ . (6)

An equilibrium state is assumed to be fully speci-

fied by 5-parameters, (n,ε,uµ) or equivalently by the

Received 25 June 2007

1)E-mail: akc@veccal.ernet.in

1157 — 1161



1158 p U Ô n � Ø Ô n ( HEP & NP ) 1 31 ò

thermal potential, α = µ/T (µ being the chemical po-

tential) and inverse 4-temperature, βµ = uµ/T . Given

a equation of state, s = s(ε,n), pressure p can be ob-

tained from the generalised thermodynamic relation,

Sµ
eq = pβµ−αNµ

eq +βλT λµ
eq . (7)

Using the Gibbs-Duhem relation, d(pβµ) =

Nµ
eqdα−T λµ

eq dβλ, following relations can be established

on the equilibrium hyper-surface Σeq(α,βµ),

dSµ
eq =−αdNµ

eq +βλdT λµ
eq . (8)

In a non-equilibrium system, no 4-velocity can be

found such that Eqs. (4)—(6) remain valid. Tensor

decomposition leads to additional terms,

Nµ = Nµ
eq +δNµ = nuµ +V µ , (9)

T µν = T µν
eq +δT µν =

[εuµuν −p∆µν ]+Π∆µν +πµν +

(W µuν +W νuµ) , (10)

Sµ = Sµ
eq +δSµ = suµ +Φµ . (11)

The new terms describe a net flow of charge

V µ = ∆µνNν , heat flow, W µ = (ε + p)/nV µ + qµ

(where qµ is the heat flow vector), and entropy flow

Φµ. Π = −
1

3
∆µνT µν −p is the bulk viscous pressure

and

πµν =

[

1

2
(∆µσ∆ντ +∆νσ∆µτ −

1

3
∆µν∆στ

]

Tστ

is the shear stress tensor. Hydrodynamic 4-velocity

can be chosen to eliminate either V µ (the Eckart

frame, uµ is parallel to particle flow) or the heat flow

qµ (the Landau frame, uµ is parallel to energy flow).

In relativistic heavy ion collisions, Landau’s frame is

more appropriate than the Eckart’s frame. Dissipa-

tive flows are transverse to uµ and additionally, shear

stress tensor is traceless. Thus a non-equilibrium

state require 1+3+5=9 additional quantities, the dis-

sipative flows Π , qµ (or V µ) and πµν . In kinetic

theory, Nµ and T µν are 1st and 2nd moment of the

distribution function. Unless the function is known

a-priori, two moments do not furnish enough infor-

mation to enumerate the microscopic states required

to determine Sµ, and in an arbitrary non-equilibrium

state, no relation exists between, N ν , T µν and Sµ.

Only in a state, close to a equilibrium one, such a

relation can be established. Assuming that the equi-

librium relation Eq. (8) remains valid in a “near equi-

librium state” also, the entropy current can be gen-

eralised as,

Sµ = Sµ
eq +dSµ = pβµ−αNµ +βλT λµ +Qµ , (12)

where Qµ is an undetermined quantity in 2nd order

in deviations, δNµ = Nµ−Nµ
eq and δT µν = T µν−T µν

eq .

Detail form of Qµ is constrained by the 2nd law

∂µ Sµ > 0. With the help of conservation laws and

Gibbs-Duhem relation, entropy production rate can

be written as,

∂µ Sµ =−δNµ ∂µ α+δT µν ∂µ βν +∂µ Qµ . (13)

Choice of Qµ leads to 1st order or 2nd order the-

ories of dissipative hydrodynamics. In 1st order the-

ories Qµ = 0, entropy current contains terms upto 1st

order in deviations, δNµ and δT µν. Entropy produc-

tion rate can be written as,

T ∂µ Sµ = ΠX−qµXµ +πµνXµν , (14)

where, X = −∇·u; Xµ =
∇µ

T
−uν ∂ν uµ and Xµν =

∇<µuν>.

The 2nd law, ∂µ Sµ > 0 can be satisfied by postu-

lating a linear relation between the dissipative flows

and and thermodynamic forces,

Π = −ζθ , (15)

qµ = −λ
nT 2

ε+p
∇µ(µ/T ) , (16)

πµν = 2η∇<µuν> , (17)

where ζ, λ and η are the positive transport coef-

ficients, bulk viscosity, heat conductivity and shear

viscosity.

In 1st order theories, causality is violated. If,

in a given fluid cell, at a certain time, thermody-

namic forces vanish, corresponding dissipative fluxes

also vanish instantly. This is corrected in 2nd order

theories
[5]

where entropy current contain terms upto

2nd order in the deviations, Qµ 6= 0. The most gen-

eral Qµ containing terms upto 2nd order in deviations

can be written as,
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Qµ = −(β0Π
2−β1q

νqν +β2πνλπνλ)
uµ

2T
−

α0Πqµ

T
+

α1π
µνqν

T
. (18)

As before, one can cast the entropy production

rate (T ∂µ Sµ) in the form of Eq. (14). Neglecting

the terms involving dissipative flows with gradients

of equilibrium thermodynamic quantities (both are

assumed to be small) and demanding that a linear

relation exists between the dissipative flows and ther-

modynamic forces, following relaxation equations for

the dissipative flows can be obtained,

Π = −ζ(θ+β0DΠ), (19)

qµ = −λ

[

nT 2

ε+p
∇µ

(

µ

T

)

−β1Dqµ

]

, (20)

πµν = 2η [∇<µuν>−β2Dπµν ] , (21)

where D = uµ ∂µ is the convective time derivative.

Unlike in the 1st order theories, in 2nd order the-

ories, dynamical equations controls the dissipative

flows. Even if thermodynamic forces vanish, dissi-

pative flows do not vanish instantly.

Before we proceed further, it may be mentioned

that the parameters, α and βλ are not connected to

the actual state (Nµ,T µν). The pressure p in Eq. (12)

is also not the “actual” thermodynamics pressure,

i.e. not the work done in an isentropic expansion.

Chemical potential α and 4-inverse temperature βλ

has meaning only for the equilibrium state. Their

meaning need not be extended to non-equilibrium

states also. However, it is possible to define a fic-

titious “local equilibrium” state, point by point, such

that pressure p in Eq. (12) can be identified with the

thermodynamic pressure, at least upto 1st order. In

2nd order in deviations, such an identification is not

possible.

3 Viscous hydrodynamics for QGP in

2+1 dimensions

Numerically, causal dissipative hydrodynamics is

a challenging problem. One needs to solve simultane-

ously 14 partial differential equations (5 conservation

equations and 9 additional equations for the dissipa-

tive flows, Π , qµ and πµν). Recently, at the Cyclotron

Centre, Kolkata, we have developed a code for solv-

ing causal dissipative hydrodynamics with dissipation

due to shear viscosity only, in 1+1 dimension
[8]

(as-

suming boost-invariance and cylindrical symmetry)

and presently extending the code in 2+1 dimensions

(with boost-invariance only). We have completed the

coding for the 1st order theory. Here, we present some

numerical results.

Assuming boost-invariance, we have solved 1st or-

der viscous hydrodynamics for initial state QGP in

2+1 dimension, in (τ,x,y,ηs) coordinate. We restrict

ourselves to central rapidity region, where the QGP

fluid is essentially baryon free and to keep the calcula-

tions simple, we consider the most important dissipa-

tive term, the shear viscosity and neglect the other

dissipative terms, e.g. heat conduction, bulk vis-

cosity. For viscosity, we have used two values, the

ADS/CFT motivated value η/s=0.08, and the per-

turbative estimate η/s=0.135. Details of the equa-

tions solved can be found in Ref. [10]. We just men-

tion that we have used the equation of state, EOS-Q,

developed in Ref. [1], with 1st order phase transition

with critical temperature Tc=164MeV. As mentioned

earlier, 1st order dissipative hydrodynamics violate

causality and can lead to unphysical effects like early

reheating. But for QGP fluid, which is close to an

ideal fluid, such effects can be minimised with ap-

propriate initial conditions, and we did not find any

evidence of early reheating.

3.1 Evolution of the viscous fluid

In the following we will show the results obtain in

Au+Au collision at impact parameter b=6.8fm, which

approximately corresponds to 16%—24% centrality

Au+Au collisions. With the same initial conditions,

we have solved the energy-momentum conservation

equations for ideal fluid and viscous fluid. In Fig. 1,

we have shown the constant energy density contour

plot in x-y plane, after an evolution of 5fm. The black

lines are for ideal fluid evolution. The red and blue

lines are for viscous fluid with η/s=0.08 and 0.135

respectively. In Fig. 2, contour plot of temperature

in x-τ plane is shown. It is evident that compared

to ideal fluid, viscous fluid cools slowly. Transverse

expansion is also enhanced in a viscous fluid. It is not
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shown, but fluid velocity grow faster in viscous flow.

Fig. 1. Contour plots of energy density at

(proper) time τ=5.2fm. (see arX: nucl-th/

0703027)

Fig. 2. Contour plots of temperature at y=0 in

x-τ plane. (see arX: nucl-th/0703027)

3.2 Particle spectra

Viscosity influences the particle production by

(i) extending the freeze-out surface and (ii) by in-

troducing a correction to the equilibrium distribution

function (see Ref. [10]). In Fig. 3, transverse momen-

tum distribution of π
− from ideal and viscous hydro-

dynamics are compared. Freeze-out temperature is

TF=0.158GeV. Pion production is increased in vis-

cous dynamics. We also note that effect of viscosity

is more prominent at large pT than at low pT. pT

spectra of pions are flattened with viscosity.

Effect of viscosity is also prominent on elliptic flow

(Fig. 4). In ideal dynamics, elliptic flow continues to

increase with pT. In viscous dynamics, on the oth-

erhand, elliptic flow tends to saturate. The result is

very encouraging, as experimentally also elliptic flow

tends to saturate at large pT.

Fig. 3. pT spectra of π
− for ideal and viscous

evolution.

Fig. 4. pT dependence of elliptic flow for π
−.

Lastly, in Fig. 5, we have shown a comparison of

pT spectra obtained in ideal hydrodynamics with ini-

tial entropy density Sini=110fm−3 with pT spectra ob-

tained in viscous hydrodynamics obtained with initial

entropy density, 60, 80 and 110. pT spectra from vis-

cous fluid initialised with Sini=60—80 compare well

with the spectra from ideal fluid, initialised at higher

entropy density. To produce the same spectra, vis-

cous fluid require 20%—30% less initial temperature.

Fig. 5. pT spectra of π
− from ideal fluid with

initial entropy density 110fm−3 is compared

with viscous dynamics with different initial en-

tropy density.
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4 Summary and conclusions

We have briefly reviewed the phenomenological

theory of dissipative hydrodynamics and presented

some numerical results from 1st order dissipative hy-

drodynamic of QGP fluid with only shear viscosity.

1st order theories suffer from the problem of causal-

ity, signal can travel faster than light. Unphysical

effects like reheating of the fluid, early in the evolu-

tion, can occur. In this model study, we have con-

sidered two values of viscosity, the ADS/CFT moti-

vated value, η/s≈0.08 and perturbatively estimated

viscosity, η/s≈0.135. We did not find any indication

of unphysical reheating. Explicit simulation of ideal

and viscous fluids confirms that energy density of a

viscous fluid, evolve slowly than its ideal counterpart.

The fluid velocities on the other hand evolve faster in

viscous dynamics than in ideal dynamics. Transverse

expansion is also more in viscous dynamics.

We have also studied the effect of viscosity on par-

ticle production. Viscosity generates entropy leading

to enhanced particle production. Particle production

is increased due to (i) extended freeze-out surface and

(ii) non-equilibrium correction to equilibrium distri-

bution function. With ADS/CFT (perturbative) es-

timate of viscosity, at pT=3GeV, pion production is

increased by a factor 3(5). Increase is even more at

large pT. While viscosity enhances particle produc-

tion, it reduces the elliptic flow. At pT=3GeV, for

ADS/CFT (perturbative) estimate of viscosity, ellip-

tic flow is reduced by a factor of 2(3). We also find

that at large pT elliptic flow tends to saturate.

To conclude, present study shows viscosity, even

if small, can be very important in analysis of RHIC

Au+Au collisions. Currently accepted initial temper-

ature of hot dense matter produced in RHIC Au+Au

collisions, obtained from ideal fluid analysis can be

changed by 20% or more with dissipative dynamics.
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