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Abstract A new method is presented for measuring event-by-event fluctuations of elliptic flow (v2) using first-

order event planes. By studying the event-by-event distributions of v2 observables and first-order event-plane

observables, average flow 〈v2〉 and event-by-event fluctuations with respect to that average can be separately

determined, making appropriate allowance for the effects of finite multiplicity. The relation of flow fluctuations

to eccentricity fluctuations in the initial-state participant region, as well as detector acceptance effects, are

discussed.
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In heavy-ion collisions, the azimuthal distribu-

tions of emitted particles can be decomposed with

a Fourier expansion
[1]

,

dN

dϕ
=

1

2π

{

1+

∞
∑

n=1

2vn cosn(ϕ−ΨRP)

}

, (1)

where ϕ and ΨRP denote the azimuthal angle of the

particle and of the reaction plane, respectively. The

Fourier coefficients,

vn = 〈cosn(ϕ−ΨRP)〉 , (2)

are referred to as anisotropic flow of the nth har-

monic. The second harmonic, elliptic flow, carries

information on the early stage of heavy-ion collisions,

and has been extensively studied. Event-by-event

flow fluctuations
[2—6]

are of considerable interest be-

cause any fluctuation observable has potential rele-

vance for phase transition phenomena, and because

typical anisotropic flow measurements are dominated

by systematic uncertainties in which flow fluctuations

play a crucial role.

Most flow analyses at RHIC to date have relied on

the second-order event plane, whereas in the present

study, a case is presented for utilizing the first-order

event plane to determine the mean elliptic flow in

any sample, and to isolate the sought-after dynam-

ical fluctuations about that mean. In RHIC ex-

periments, first-order event planes can be obtained,

for example, via the ZDC-SMD (Shower Maximum

Detector)
[7]

or the Forward TPC
[8]

of the STAR de-

tector. In the scenario envisaged here, the fluctu-

ating anisotropies are based on measurements near

midrapidity, while the first-order event plane deter-

mination utilizes detectors that are far removed in

rapidity. Consequently, non-flow effects (correlations

that may contribute to vn but which are unrelated

to the event reaction plane) are believed to be neg-

ligible using this method
[8]

. With two independent

first-order event planes ψa and ψb, elliptic flow can

be determined with the help of the relations

vobs
2 = 〈cos(2ϕ−ψa−ψb)〉=

〈cos(2ϕ−2ΨRP)〉 〈cos(2ΨRP−ψa−ψb)〉=

v2 〈cos(ψa−ψb)〉 , (3)
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where the last factor, 〈cos(ψa −ψb)〉 is the product

of the two first-order event plane resolutions
[1]

. The

above is based on the assumptions that the two event

planes are independent, and that the distributions of

ψa and ψb with respect to the true reaction plane are

symmetric.

We introduce two event-by-event quantities

c(k)
2 ≡ 〈cos2(ϕ−ΨRP;k)〉 , (4)

s(k)
2 ≡ 〈sin2(ϕ−ΨRP;k)〉 , (5)

where index k denotes the kth event. Using the equal-

ity

cos (2ϕ−ψa;k−ψb;k) = cos[2(ϕ−ΨRP;k)−

(ψa;k−ΨRP;k)−(ψb;k −ΨRP;k)] =

cos2(ϕ−ΨRP;k) cos(∆ψa;k +∆ψb;k)+

sin2(ϕ−ΨRP;k) sin(∆ψa;k +∆ψb;k), (6)

where ∆ψa;k = ψa;k −ΨRP;k and ∆ψb;k = ψb;k −ΨRP;k,

and averaging over all particles in a single event, we

define

cobs;k
2 ≡ 〈cos(2ϕ−ψa;k−ψb;k)〉=

c(k)
2 cos(∆ψa;k +∆ψb;k)+

s(k)
2 sin(∆ψa;k +∆ψb;k), (7)

sobs;k
2 ≡ 〈sin(2ϕ−ψa;k−ψb;k)〉=

s(k)
2 cos(∆ψa;k +∆ψb;k)−

c(k)
2 sin(∆ψa;k +∆ψb;k). (8)

Note that, averaged over all events, 〈cobs;k
2 〉= vobs

2 ,

〈sobs;k
2 〉= 0, 〈c(k)

2 〉= v2, and 〈s(k)
2 〉= 0.

Each quantity in Eq. (7) is an instance (or ele-

ment) of its own distribution (or set)
[9]

. Thus the

distribution of cobs;k
2 is related to the distributions of

c(k)
2 , s(k)

2 , and (∆ψa;k +∆ψb;k) according to

{cobs;k
2 } = {c(k)

2 }⊗{cos(∆ψa;k +∆ψb;k)}⊕

{s(k)
2 }⊗{sin(∆ψa;k +∆ψb;k)}, (9)

where the operators ⊗ and ⊕ demonstrate the rela-

tionship between the instances of the distributions,

instead of between the distributions themselves
[9]

.

Here we assume that the distribution of the first-

order event planes {∆ψa;k +∆ψb;k} is independent of

{c(k)
2 } and {s(k)

2 } . This assumption is usually not

valid for second-order event planes, and this illus-

trates one of the advantages of the present approach.

We further assume that {∆ψa;k} and {∆ψb;k} are

both symmetric around zero, so that {∆ψa;k +∆ψb;k}

and {∆ψa;k−∆ψb;k} are identical. Thus Eq. (9) be-

comes

{cobs;k
2 } = {c(k)

2 }⊗{cos∆ψab;k}⊕

{s(k)
2 }⊗{sin∆ψab;k}, (10)

where ∆ψab;k = ∆ψa;k −∆ψb;k = ψa;k −ψb;k. Note

that the cosine part and the sine part on the r.h.s. of

Eq. (10) are not independent. However, in the proce-

dure for estimating the mean and RMS values of v2

(all that is required in the present analysis), the cross

term vanishes due to symmetry, so we can treat these

two parts as independent. The distribution {sobs;k
2 }

can be treated in a similar way.

In the following discussion, we use the same con-

vention as in Ref. [9], where E{x} and σ{x} denote

the mean (or expectation value) and the RMS (or

standard deviation), respectively, of the distribution

{x} . Eq. (10) and its sin-counterpart can be rewrit-

ten and resolved with respect to mean values of {c(k)
2 }

and {s
(k)
2 }:

E{c(k)
2 } =

[

E{cobs;k
2 }E{cos∆ψab;k}−

E{sobs;k
2 }E{sin∆ψab;k}

]/

[

E2{cos∆ψab;k}+E2{sin∆ψab;k}
]

, (11)

E{s(k)
2 } =

[

E{sobs;k
2 }E{cos∆ψab;k}+

E{cobs;k
2 }E{sin∆ψab;k}

]/

[

E2{cos∆ψab;k}+E2{sin∆ψab;k}
]

. (12)

Everything on the r.h.s. of Eq. (11) and (12) is an

experimental observable. In the caseE{sin∆ψab;k}�

E{cos∆ψab;k,} Eq. (11) and (12) reduce to

E{c(k)
2 } = E{cobs;k

2 }/E{cos∆ψab;k}, (13)

E{s(k)
2 } = E{sobs;k

2 }/E{cos∆ψab;k}. (14)

Normally, E{cos∆ψab;k} is regarded as a correction

for the event plane resolution.

The RMS values of the v2 distributions in Eq. (10)
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and its sin-counterpart are calculable as per

σ2{c(k)
2 } = (V E{cos2 ∆ψab;k}−

SE{sin2 ∆ψab;k})/E{cos2∆ψab;k}, (15)

σ2{s(k)
2 } = (SE{cos2 ∆ψab;k}−

V E{sin2 ∆ψab;k})/E{cos2∆ψab;k}. (16)

where

V = σ2{cobs;k
2 }−E2{c(k)

2 } σ2{cos∆ψab;k}−

E2{s(k)
2 } σ2{sin∆ψab;k}, (17)

S = σ2{sobs;k
2 }−E2{c(k)

2 } σ2{sin∆ψab;k}−

E2{s(k)
2 } σ2{cos∆ψab;k}. (18)

The denominator in Eqs. (15) and (16),

E{cos2∆ψab;k} , is related to the second-order event

plane resolutions derived from the first-order event

planes.

The observed fluctuations σ{c(k)
2 } and σ{s(k)

2 }

each have two contributions: dynamical and statis-

tical fluctuations.

σ2{c(k)
2 } = σ2

dyn{c
(k)
2 }+σ2

stat{c
(k)
2 }=σ2

dyn{c
(k)
2 }+

0.5(1+v4−2E2{c(k)
2 })/M, (19)

σ2{s(k)
2 } = σ2

dyn{s
(k)
2 }+σ2

stat{s
(k)
2 }=σ2

dyn{s
(k)
2 }+

0.5(1−v4−2E2{s(k)
2 })/M, (20)

where M denotes multiplicity, and the v4 term arises

from setting n= 2 in the following equalities:

〈cos2n(ϕ−ΨRP)〉 = 0.5(1+v2n), (21)

〈sin2n(ϕ−ΨRP)〉 = 0.5(1−v2n). (22)

v4 is usually negligible compared with 1.

Although Eq. (13) has minimal, if any, non-flow

contributions, Eqs. (15) and (16) are influcenced by

non-flow effects, since two-particle correlation is in-

volved in the definition of flow fluctuations. If we

assume that there are the same or similar amounts of

non-flow contributions in σdyn{c
(k)
2 } and σdyn{s

(k)
2 },

then in principle we can greatly suppress non-flow

contributions with the difference:

σ2
dyn{c

(k)
2 }−σ2

dyn{s
(k)
2 }=

V −S

E{cos2∆ψab;k}
−

(v4−E
2{c

(k)
2 }+E2{s

(k)
2 })

M
. (23)

In the case where the distribution {ϕ−ΨRP;k} is sym-

metric around zero, E{s(k)
2 } vanishes, and we have

σ2
dyn{c

(k)
2 }=

V −S

E{cos2∆ψab;k}
−

(v4−E
2{c

(k)
2 )}

M
. (24)

Fig. 1. (color online) Schematic representation,

in the plane transverse to the beam (z) direc-

tion, of a collision between two identical nu-

clei. The x- and y-axes are drawn as per the

standard convention. The solid circles illus-

trate a possible configuration of the partici-

pant nucleons. Due to the fluctuation of this

event, the overlap zone is shifted and tilted

with respect to the (x,y) frame. x
′ and y

′ are

the principal axes of inertia of the solid circles.

In heavy-ion collisions, due to the finite number

of participants, the overlap zone could be translated

and rotated with respect to the conventional coordi-

nate system, as illustrated in Fig. 1. As a result, the

final produced particles are symmetrically distributed

about the x′ axis, instead of the x axis. In this pa-

per, we neglect the translation, and only consider the

rotation of the overlap zone. We define the angle be-

tween x′ and x direction to be ∆ψk for the kth event,

and c(k)
2 becomes

c(k)
2 = c′(k)

2 cos2∆ψk−s
′(k)
2 sin2∆ψk , (25)

where c′(k)
2 and s′(k)

2 are measured along the x′ axis.

s(k)
2 can be treated in the same way. The mean values

of {c(k)
2 } and {s(k)

2 } are related to those of {c′(k)
2 } by

E{c(k)
2 } = E{c′(k)

2 }E{cos2∆ψk} , (26)

E{s(k)
2 } = E{c′(k)

2 }E{sin2∆ψk} . (27)

E{s′(k)
2 } goes to zero, due to symmetry. Therefore

E{c(k)
2 } is always less than or equal to E{c′(k)

2 } . If the

distribution {∆ψk} is symmetric around zero, then
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E{s(k)
2 } vanishes. {∆ψk} can be simulated, for exam-

ple, in a Glauber calculation
[10]

.

To suppress the non-flow contributions, in princi-

ple we can follow the same idea as in Eq. (23),

E{(c(k)
2 )2−(s(k)

2 )2}=

E{(c′(k)
2 )2−(s′(k)

2 )2}E{cos4∆ψk}. (28)

where the distribution {∆ψk} is assumed to be sym-

metric around zero. Due to symmetry, we set E{s(k)
2 },

E{s′(k)
2 } and σdyn{s

′(k)
2 } to zero, and arrive at the fluc-

tuation of interest

σ2
dyn{c

′(k)
2 } =

(

E2{c(k)
2 }+

V −S

E{cos2∆ψab;k}

)

/

E{cos4∆ψk}−E
2{c′(k)

2 }−

(v′4−E
2{c

′(k)
2 })/M . (29)

Another way to measure v2 fluctuations along the

x′ axis is through eccentricity. The standard defini-

tion of eccentricity for the kth event is

εk ≡
〈y2

k
−x2

k
〉

〈y2
k
+x2

k
〉
. (30)

where xk and yk denote the participant coordinates.

The coordinates (x,y) and (x′,y′) are linked by the

rotation through ∆ψk, thus the eccentricities in the

two coordinate systems are related according to

εk = ε′
k

cos2∆ψk +
2x′

k
y′

k
sin2∆ψk

(y′
k
)2 +(x′

k
)2

. (31)

The mean values of {εk} and {ε′
k
} have the same re-

lationship as {c(k)
2 } and {c′(k)

2 } in Eq. (26), i.e.,

E{εk}=E{ε′
k
}E{cos2∆ψk} . (32)

As long as the ratio between E{εk} and E{ε′
k
} is

known, we can calculate v2 and its fluctuation along

the x′ axis.

To allow for detector imperfections, we can break

down the v2 observable into cosine and sine compo-

nents.

vobs
2cos ≡ 〈2cos2ϕ cos(ψa +ψb) 〉 (33)

vobs
2sin ≡ 〈2sin2ϕ sin(ψa +ψb) 〉 (34)

In the kth event, we have

cobs;k
2cos = cobs;k

2 +〈cos(2ϕ+ψa;k +ψb;k)〉=

2〈cos2 2ϕ〉cobs;k
2 +〈sin4ϕ〉sobs;k

2 (35)

cobs;k
2sin = cobs;k

2 −〈cos(2ϕ+ψa;k +ψb;k)〉=

2〈sin2 2ϕ〉cobs;k
2 −〈sin4ϕ〉sobs;k

2 . (36)

If ϕ can be measured with negligible detector imper-

fections, then 〈sin4ϕ〉 should vanish, and there is no

difference between 〈cos2 2ϕ〉 and 〈sin2 2ϕ〉. Otherwise,

E{cobs;k
2cos } and E{cobs;k

2sin } will be different from each

other, and from E{cobs;k
2 .} In some of the cases previ-

ously mentioned, E{sobs;k
2 } goes to zero, and we may

consider 〈cos2 2ϕ〉 and 〈sin2 2ϕ〉 to be correction fac-

tors for the detector deficiencies.

We can further separate the v2 observable into

four terms:

vobs
2cos′ ≡ 〈4cos2ϕ cosψa cosψb〉, (37)

vobs
2cos′′ ≡ 〈−4cos2ϕ sinψa sinψb〉, (38)

vobs
2sin′ ≡ 〈4sin2ϕ sinψa cosψb〉, (39)

vobs
2sin′′ ≡ 〈4sin2ϕ cosψa sinψb〉. (40)

By way of example, we next consider the first term

in the kth event.

cobs;k
2cos′ =

[1+〈cos4ϕ〉+cos2ψa;k +cos2ψb;k]c
obs;k
2 +

[〈sin4ϕ〉−sin2ψa;k−sin2ψb;k]s
obs;k
2 . (41)

If ϕ, ψa and ψb are all measured with negligible detec-

tor imperfections, then E{cobs;k
2cos′} = E{cobs;k

2 .} When

〈cos4ϕ〉, 〈cos2ψa;k〉 and 〈cos2ψb;k〉 are all very small

compared with 1, the correction factor can be approx-

imated according to

1+〈cos4ϕ+cos2ψa;k +cos2ψb;k〉≈

[1+〈cos4ϕ〉] [1+〈cos2ψa;k〉] [1+〈cos2ψb;k〉] =

2〈cos2 2ϕ〉2〈cos2ψa;k〉2〈cos2ψb;k〉. (42)

The other three terms of the v2 observable can be

treated in a similar way.

In summary, this work presents a new method for

experimental analysis of elliptic flow in a scenario

where the first-order event plane can be resolved.

The method allows the extraction of mean v2 and

its dynamical event-by-event fluctuations, and good

immunity to statistical fluctuations can be expected.

Recipes have been developed to suppress non-flow

contributions. Fluctuations in spatial eccentricity in
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the initial-state participant region have been consid- ered, as have detector acceptance effects.
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