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Abstract Theoretical study of nuclear physics with strangeness from the nuclear physics group at Nankai

university is briefly introduced. Theoretical calculations on hyperon mean free paths in nuclear medium

have been done. The other 4 topics in the area of strangeness nuclear physics are the effect of different

baryon impurities in nucleus, the heavy flavored baryon hypernuclei, the eta-mesons in nuclear matter and the

properties of kaonic nuclei.
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It’s my pleasure to present our work
[1—10]

from

the Nuclear Physics group at Nankai University. I

will focus on 5 topics in the area of Strangeness Nu-

clear Physics. I will go into more details topic by

topic.

1 Hyperon mean free paths(MFP) in

nuclei
[1]

Almost nothing has been done in theoretical cal-

culations on hyperon MFP in nuclear medium. It

is mainly due to the lack of experimental data

on hyperon-nucleon/nucleus interactions. Recently,

there are some experimental progresses in this area

that improve the conditions for us to study the hy-

peron MFP in nuclei.

On this topic, we attempt to calculate the hyperon

MFP in nuclei within the framework of the relativis-

tic mean-field (RMF) theory. To calculate the hy-

peron mean free paths in a nucleus, the key point is to

construct an energy-dependent hyperon-nucleus opti-

cal potential. In our work, we obtain the real scalar

and vector hyperon-nucleus potentials from the rela-

tivistic mean-field approach. Then following Cooper’s

work
[11]

,

U IY
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•U IN
S and U IY
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V , (1)

we figure out the hyperon-nucleus imaginary poten-

tials from the nucleon-nucleus imaginary potentials.

The hyperon optical potentials U = V + iW can be

identified as the Schrodinger equivalent potentials

and
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Note that the equation U = V + iW which are the

hyperon optical potentials in the non-relativistic ap-

proach, but including the relativistic correction in this

term:

[(E−MB)2/2MB] .

Equations (2) and (3) show that the Schrodinger

equivalent potentials are energy dependent.

At zero momentum, compared with the usual op-

tical potentials defined in the RMF, the optical po-

tentials equal the scalar potential plus the vector po-

tential (Uopt = US + UV ). Also in Eqs. (2) and (3),
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each Schrodinger equivalent potential has an addi-

tional term—that is the third term.

I will talk more later about how much the third

term contributes to the Schrodinger equivalent poten-

tial. Now we can express the hyperon mean free path

as

λ =
1

2

{

−MY

(

E−MY−V +
(E−MY)2

2MY

)

+

MY

[

(

E−MY−V +
(E−MY)2

2MY

)2

+W 2

] 1
2
}− 1

2

. (4)

With these determined potentials, we have calculated

the hyperon MFP in nuclei. We show that the MFP

of Λ, Ξ in 40Ca and 208Pb as a function of r in Fig. 1

and Fig. 2. The solid curves and dotted curves corre-

spond to the hyperon incident energies Tlab=300MeV

and 600MeV, respectively.

Fig. 1. The Λ- and Ξ-hyperon mean free path

as a function of the incident energies, Tlab,

from 200MeV to 800MeV in 40Ca and 208Pb

at r=2fm in (a) and (b), respectively.

Fig. 2. The hyperon mean free path as a func-

tion of the radius in 40Ca and 208Pb, with inci-

dent energies, Tlab=300MeV and 600MeV, re-

spectively. Those for the Λ-hyperon are shown

in (a) and those for the Ξ-hyperon are shown

in (b).

We also find that, in the center of nuclei, the hy-

peron MFP is about 2—3fm for Λ, and about 4—8fm

for Ξ−, depending on the hyperon incident energy.

And the hyperon MFP decreases with the increment

of the hyperon incident energy.

This work is only an attempt to calculate the MFP

of the hyperon. Owing to the importance of the in-

medium properties of the hyperons, more theoretical

as well as experimental work on the hyperon mean

free path are needed. The study of the temperature

dependence of the hyperon MFP is also needed be-

cause of the appearance of hyperons in high-energy

heavy-ion reactions.

2 The effect of different baryon impu-

rities in nucleus
[2]

It is well known that the change of bulk proper-

ties of nuclei under the presence of strange impurities,

like the lambda hyperon, is an interesting subject in

hypernuclear physics.

Since a Lambda does not suffer from Pauli block-

ing in Lambda hypernuclei, it can locate at the center

of a nucleus. Consequently, the Lambda attracts the

surrounding nucleons and makes the nucleus shrink.

Recently, the experiment KEK-PS E419 showed clear

evidence for this shrinkage of the 7Li Lambda hyper-

nucleus.

How about other strange impurity baryons, such

as Sigma-hyperon and Cascade-hyperon or even

heavy-flavored baryons? How about the effect of dif-

ferent baryon impurities on the nuclei?

In this work, we demonstrate the above problems

and solutions within the framework of the relativistic

mean-field model. In the computation of relativistic

mean-field, the most important part is to determine

the coupling constants. Let’s take a closer look at it

next.

The coupling constants of hyperons to the vector

fields in the native quark-counting model are obtained

from these simple equations:

gωΞ− = gωΞ0 = gωΞ0
c
= g

ωΞ
+
c

=
1

3
gωN,

gρΞ− = gρΞ0 = gρΞ0
c
= g

ρΞ+
c

= gρN,

gωΛ = g
ωΛ+

c
= gωΛb

=
2

3
gωN.

(5)
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The scalar coupling constants for the hyperons are

fixed to the potential depth of the corresponding hy-

peron in normal nuclear matter:

UΛ+
c

= UΛb
=−30MeV,

UΞ0
c
= UΞ

+
c

=−16MeV.
(6)

Let’s see the calculation results as the following.

For lighter Lambda hypernuclei, the size of the core

nucleus in a hypernucleus is smaller than the core nu-

cleus in free space; i.e. the values of both rn and rp in

a hypernucleus are less than those in the correspond-

ing ordinary nucleus. For instance, the rms radius

rn (rp) of neutrons (protons) decreases from 2.32fm

(2.37fm) in 6Li to 2.25fm (2.29fm) in 7
ΛLi. The at-

tracting role of Lamda is obtained in agreement with

the KEK-PS E419 experiment. But the situation for

Ξ hypernuclei is different. It is particularly of in-

terest to observe a quite different effect caused by Ξ

hyperon impurities. The rms radii of the neutrons

become a little larger, while the rms radii of the pro-

tons become much smaller, comparing with those in

the normal nuclei. Contrary to the Ξ− hypernuclei,

the rms radii of the protons become larger and those

of the neutrons become smaller in the Ξ0 hypernuclei.

What can we observe from the calculation results

about the effect of different baryon impurities in nu-

cleus? From all these results, we can draw the follow-

ing conclusions:

First of all, systematic calculations show that Λ+
c

and Λb have the same attracting role as the Λ hyperon

does in lighter hypernuclei.

Next, the Ξ− and Ξ0
c hyperons have the attract-

ing role only for the proton distribution and have a

repulsive role for the neutron distribution.

On the contrary, Ξ0 and Ξ+
c hyperons attract the

surrounding neutrons and reveal a repulsive force to

the protons.

Finally, we find that the different effects of differ-

ent baryon impurities on the nuclear core are due to

the different third components of their isospin.

3 Heavy flavored baryon hypernuclei
[3]

Here heavy flavored baryon hypernuclei means

charmed nuclei and bottom nuclei.

They will provide us with the first opportunity to

learn about the behavior of heavy flavored hadrons in

nuclear many-body systems.

Given the shortage of experimental data, can we

theoretically estimate their Bound States? Let’s use

the relativistic mean-field model as theoretical frame-

work. From Ref. [11], we can use the following cou-

pling constants to the vector fields for the heavy fla-

vored baryons,

g
ωΛ+

c
= gωΛb

=
2

3
gωN, g

ωΞ+
c

= gωΞ0
c
=

1

3
gωN,

g
ρΞ+

c
= gρΞ0

c
= gρN.

(7)

And the coupling constants to the scalar field depend

on the scalar field. They are fixed by the optical po-

tential in our work.

UY = gσYσeq +gωYωeq
0 . (8)

Thus, we investigated a number of theoretical val-

ues for the heavy flavored baryon potential well UY.

Here is an example by the theoretical estimates. Fig-

ure 3 shows the level space for Λb single-particle en-

ergies in 41
Λb

Ca and 208
Λb

Pb.

Fig. 3. Level space for Λb single-particle ener-

gies in 41
Λb

Ca and 208
Λb

Pb.

In conclusion, we found that no Λ+
c or Ξ+

c bound

states could exist if the potential well depths are in

these ranges

∣

∣UΛ+
c

∣

∣6 10MeV or
∣

∣UΞ+
c

∣

∣6 14MeV, (9)

in nuclear matter.

If
∣

∣UΛ+
c

∣

∣6 20MeV or
∣

∣UΞ+
c

∣

∣ 6 18MeV,

Λ+
c or Ξ+

c ,
(10)

the Λ+
c and Ξ+

c hypernuclei cannot bind to the very

heavy nuclei, for example 208Pb. We suggest that

heavy systems be considered in the experimental

searches for Λ+
c and Ξ+

c hypernuclei.



1 9 Ï w²£µHm�ÆÛÉ5ØÔn�nØïÄ 867

4 Eta-mesons in nuclear matter
[4]

We have deduced the eta-nucleon interactions

from the heavy-baryon chiral perturbation theory to

the next-to-leading-order terms.

Combining the relativistic mean-field theory for

nucleon system, we have studied the in-medium prop-

erties of the eta meson. We find that all the elastic-

scattering ηN interactions come from the next-to-

leading-order terms. And we found the eta-nucleon

sigma term is about 280±130MeV. The off-shell terms

are also important to the in-medium properties of the

eta meson.

On application of the latest determination of the

eta-nucleon scattering length, the ratio of the eta-

meson effective mass to its vacuum value is near

0.84±0.015, whereas the optical potential is about

−(83±5)MeV at the normal nuclear density.

The interactions between pseudoscalar mesons

(pion, kaon, and eta mesons) and baryons (nucleons

and hyperons) are described by the SU(3)L×SU(3)R

chiral Lagrangian, which can be written as

Lchiral = Lφ +LφB . (11)

the mesonic term is

Lφ =
1

4
f 2Tr∂µ

Σ ∂µ Σ†+
1

2
f 2B0[TrMq(Σ−1)+h.c.].

(12)

the lowest order of meson-baryon interactions is

L
(1)
φB = TrB̄(iγµ ∂µ−mB)B+iTrB̄γµ[Vµ,B]+

DTrB̄γµγ5{Aµ,B}+FTrB̄γµγ5[Aµ,B], (13)

the next-to-leading order of meson-baryon interac-

tions is

L
(2)
φB = a1TrB̄(ξMqξ+h.c.)B+

a2TrB̄B(ξMqξ+h.c.)+

a3TrB̄BTr(MqΣ +h.c.)+

d1TrB̄A2B+d2TrB̄(vA)2B+

d3TrB̄BA2 +d4TrB̄B(vA)2 +

d5TrB̄BTrA2 +d6TrB̄BTr(vA)2 +

d7TrB̄AµTrAµB+d8TrB̄(vA)Tr(vA)B+

d9TrB̄AµBAµ +d10TrB̄(vA)B(vA). (14)

The calculated results are listed in Table 1 of

Ref. [4]. Recent eta-N scattering length in literature

is about 0.717—1.14fm. Thus, the potential depth is

about 63—88MeV in our predictions.

5 The properties of kaonic nuclei
[5]

In K-nucleus, a Kaon does not suffer from Pauli

blocking, it can locate at the center of a nucleus; then,

the Kaon attracts surrounding nucleons and makes

the nucleus shrink.

We have studied these properties of kaonic nuclei

from C to Ti in the relativistic mean-field theory. The

1s and 1p state binding energies of Kaon are in the

range of 73—96MeV and 22—63MeV, respectively.

The binding energies of 1p states increase monotoni-

cally with the nucleon number A. We also calculated

the upper limit and the lower limit of the widths for

the 1s states and the 1p states. We show that if V0

is less than or equals to 30MeV, the discrete Kaon

bound states should be identified in experiment. We

find that the interior nuclear density increases ob-

viously, and the densest center density is about 2.1

times the normal nuclear density.

We now show the equations of motion for describ-

ing the K-nucleus system. For nucleon system the

equations of motion are:

[

− iα •∇+β(MN +gσNσ0)+gωNω0 +

gρNτ3ρ0 +eIcA0

]

ΨN = εΨN,

(−∇2 +m2
σ)σ0 = −gσNΨ̄NΨN−g2σ

2
0 −g3σ

3
0 −

gσKmKK̄K,

(−∇2 +m2
ω)ω0 = −gωNΨ̄Nγ0ΨN−

2gωK(E +gωKω0)K̄K,

(−∇2 +m2
ρ)ρ0 = gρNΨ̄Nγ0IΨN,

−∇2A0 = eΨNγ0IcΨN, (15)

and the equation of motion for antikaon is

[−∇2 +(m2
K−E2)+Π ]K̄ = 0, (16)

with the antikaon self-energy in nuclei

Π =−2gωKEω0 +gσKmKσ0−(gωKω0)
2 . (17)

shown with the antikaon self-energy in nuclei calcu-

lated.
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Table 1. The r.m.s. radii of neutron, proton and charge distribution, respectively.

V0 rp rn rch V0 rp rn rch −V0 rp rn rch

12C 2.32 2.30 2.46 24Mg 2.86 2.82 2.97 36Ar 3.26 3.21 3.36
12CK− 15 2.20 2.18 2.35 24MgK− 15 2.80 2.77 2.92 36ArK− 15 3.22 3.17 3.32

30 2.20 2.18 2.35 30 2.80 2.77 2.92 30 3.22 3.17 3.32

50 2.21 2.19 2.35 50 2.80 2.77 2.92 50 3.22 3.18 3.33
16O 2.58 2.55 2.70 28Si 2.93 2.90 3.04 40Ca 3.36 3.31 3.46

16OK− 15 2.52 2.49 2.65 28SiK− 15 2.88 2.85 2.99 40CaK− 15 3.32 3.27 3.42

30 2.51 2.49 2.64 30 2.88 2.85 2.99 30 3.32 3.28 3.42

50 2.51 2.48 2.64 50 2.88 2.85 2.99 50 3.32 3.28 3.43
20Ne 2.82 2.74 2.94 32S 3.13 3.09 3.24 44Ti 3.44 3.39 3.54

20NeK− 15 2.77 2.69 2.89 32SK− 15 3.08 3.04 3.19 44TiK− 15 3.41 3.36 3.50

30 2.77 2.68 2.89 30 3.08 3.04 3.19 30 3.41 3.36 3.50

50 2.76 2.68 2.88 50 3.09 3.04 3.20 50 3.41 3.36 3.51

To include the antikaon absorptions in a nucleus,

we introduce a complex potential in the realistic cal-

culations.

Π̃ =
[

−2gωKω0ReE +gσKmKσ0−(gωKω0)
2
]

+

i

[

−2(ReE)fV0

ρ

ρ0

]

. (18)

The imaginary part is given with the simple

“t-rho” form. “f” is a suppression factor for the

phase space available. The decay products should be

reduced for deeply bound states, which will decrease

the imaginary potentials. The details of the binding

energies of K nucleus system are in Ref. [5]. Table 1

shows the r.m.s. radii of neutron, proton and charge

distribution, respectively.

The shrinkage is also predicted in kaonic nuclei.

Fig. 4 shows the nucleon-density as a function of nu-

cleus radius. The solid and dotted curves are for the

kaonic nuclei and the corresponding ordinary nuclei,

respectively. We can see that the interior nuclear den-

sities become denser than those of the ordinary nuclei.

But, the interior nuclear densities do not increase

drastically. The densest nuclear density is about 2.1

times the normal nuclear density.

Fig. 4. Nucleon-density as a function of nucleus

radius for kaonic nuclei.
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