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Abstract A multilayered perceptrons’ neural network technique has been applied in the particle identification

at BESIII. The networks are trained in each sub-detector level. The NN output of sub-detectors can be sent to

a sequential network or be constructed as PDFs for a likelihood. Good muon-ID, electron-ID and hadron-ID

are obtained from the networks by using the simulated Monte Carlo samples.
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1 Introduction

Particle identification (PID) will play an essential

role in most of the BES0 physics program[1]. Good

µ/π separation is required in precise fD/fDs
measure-

ments. Excellent electron ID will help to improve the

precision of CKM elements Vcs and Vcd. The iden-

tification of hadronic (π/K/p) particles is the most

common tool in BES0 physics analysis, sometimes

it is the most crucial tool for the analysis.

Each part of the BES0 detector executes its own

functions and provides a vast amount of informa-

tion which determines the final efficiency of parti-

cle identification. The PID ability is quite different

for each sub-detector in different momentum range.

To improve the PID performance, a powerful tech-

nique is required to wisely combine these information

together, especially when some of these information
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are highly correlated. In recent years, a couple of

PID algorithms have been developed: the likelihood

method[2], the Fisher discriminator[3], the H-Matrix

estimator[4], the Artificial Neural Network[5], and the

Boosted Decision Tree[6], and so on. In this paper, we

present an application of the powerful artificial neural

network (ANN) method to BES0 PID algorithm.

2 The PID system of BES000

The BES0 detector[1, 7] consists of a beryllium

beam pipe, a helium-based small-celled drift cham-

ber, Time-Of-Flight (TOF) counters for particle iden-

tification, a CsI(Tl) crystal calorimeter, a super-

conducting solenoidal magnet with the field of 1 T,

and a muon identifier of Resistive Plate Counters

(RPC) interleaved with the magnet yoke plates. The

preliminary version of the BES Offline Software Sys-

tem (BOSS)[8] has been implemented successfully.

The detector simulation[9] is based on Geant4[10]. A

tremendous amount of software work has been accom-

plished but much remains to be done.

2.1 The dE/dx measurements

The Main Drift Chamber (MDC) consists of 43

layers of sensitive wires and works with a 60%/40%

He/C3H8 gas mixture. The expected momentum res-

olution σp/p is about 0.5% @1 GeV/c. The energy

loss in the drift chamber can provide additional in-

formation on particle identification. The normalized

pulse height, which is proportional to the energy loss

of incident particles in the drift chamber, is a func-

tion of βγ = p/m, where p and m are the momentum

and mass of a charged particle. Fig. 1(a) shows the

normalized pulse heights varying with the momen-

tum for different particle species. The electron, muon

and pion can not be well separated around 0.2 GeV/c

by using dE/dx pulse heights. Similarly, the dE/dx

pulse height will fail to separate the electron from the

kaon around 0.5—0.6 GeV/c.

There are a lot of factors which can affect the

dE/dx measurements[11]: the number of hits, the

average pass lengthes in each cell, the space charge

and saturation effects, the non-uniformity of electric

fields, and so on. After the calibration, the resolution

of dE/dx measurements is expected to be 6%—7%.

Using dE/dx information, a 3σ K/π separation can

be achieved up to 0.6 GeV/c; Good e/π separation

can be obtained above 0.4 GeV/c.

2.2 The TOF counter

Outside the MDC is the TOF system, which is

crucial for particle identification. It consists of a two-

layer barrel array and one layer endcap array. There

are two readout PMTs on each barrel scintillator and

one on endcap scintillator. The expected time reso-

lution for two layers is from 100 to 110 ps for K and

π, giving a 2σ K/π separation up to 0.9 GeV/c.

The physics goal of TOF system is to measure the

flight time of charged particle. The velocity (βc) and

mass (m) of the charged particle can be calculated by

β =
L

c× tmea

, m2 = p2×
1−β2

β2
, (1)

where tmea is the measured time-of-flight, L and p are

the corresponding flight path and momentum of the

charged particle given by the MDC measurements,

and c is the velocity of light in vacuum. The typical

mass square distributions for the electron, pion, kaon

and proton in different momentum range are drawn

in Fig. 1(b).

Fig. 1. (a) The normalized pulse heights (dE/
dx) vs. momentum of charged particles; (b)
The mass square distribution from TOF mea-
surements.

The PID ability relies on the time resolution (σt)

of the TOF system. The σt depends on the pulse

height, hit position, and the beam status. Usually

the value of σt varies in different TOF counters due

to the different performances of the scintillator, PMT,

and electronics. Since the distinctive TOF measure-

ments correlate due to the common event start time,

the weighted time-of-flight for two layers is obtained

by a correlation analysis depicted in Ref. [12].

2.3 The CsI(Tl) calorimeter

The CsI(Tl) crystal electromagnetic calorimeter

(EMC) contains 6240 crystals, and is used to measure
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the energy of photons precisely. The expected energy

and spatial resolutions are 2.5% and 0.6 cm @1 GeV,

respectively. The character of electromagnetic shower

is distinctive for electron, muon and hadron, the en-

ergy deposit and the shape of shower in calorimeter

can be used as discrimination variables to do PID.

In the CsI(Tl) crystal, the energy deposit by ion-

ization is about 0.165 GeV for the charged parti-

cles passing at normal incidence through the EMC.

Electron and positron lose all of their energies in the

calorimeter by producing the electromagnetic show-

ers, the ratio of deposit energy to the track momen-

tum (E/p) will be approximately unity. Sometimes

the energy deposit of hadrons will have an E/p ratio

higher than that of the expected by ionization due

to the nuclear interaction with materials. Fig. 2(a)

shows the energy deposit vs momentum for e, µ and

π in EMC.

Fig. 2. (a) Energy deposit in EMC vs. the momentum for e, µ and π; (b) Ratio of Eseed/E3×3 for e, µ and
π; (c) Ratio of E3×3/E5×5 for e, µ and π; (d) Second-moment S distribution for e, µ and π.

The “shape” of shower can be characterized by the

three energies: Eseed, the energy deposited in the cen-

tral crystal; E3×3, the energy deposited in the central

3×3 crystal array; and E5×5, the energy deposited in

the central 5×5 crystal array. The ratios of Eseed/E3×3

and E3×3/E5×5 for e, µ and π at 1 GeV/c are plotted

in Fig. 2(b) and 2(c), respectively.

The second-moment S is defined as

S =

∑

i
Ei

•d2
i

∑

i
Ei

, (2)

where Ei is the energy deposit in the i-th crystal, and

di is the distance between the i-th crystal and the

center position of reconstructed shower. The orig-

inal idea of S was developed by the Crystal Ball

experiment[13] to distinguish the cluster generated by

π
0 and γ. The S distributions for e, µ and π at 1

GeV/c are shown in Fig. 2(d).

2.4 The muon system

The magnet return iron has nine layers of Resis-

tive Plate Chambers (RPC) in the barrel and eight

layers in the endcap to form a muon counter. All the

Fig. 3. (a) The travel depth of µ and π in muon
counter; (b) The maximum number of hits for
µ and π in all RPC layers.
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RPCs have been manufactured, tested and installed.

The spatial resolution obtained is about 16.6 mm.

The energy of electron which is exhausted in the

calorimeter, cannot reach the muon counter. Most

of the hadrons passed the material of calorimeter,

magnet, and would be absorbed in the return irons.

Muons have a quite strong punching ability. Usually

they will produce one hit in each layer, hadrons may

produce many hits in a certain layer if an interaction

occurs. The distance of muon hit to the extrapolated

position of inner track will be helpful to reduce the

hadron contamination to a lower level, since the hits

generated by the secondary muon from the decay of

π/K cannot match the inner track very well. Fig. 3

shows the distributions of travel depth and the max-

imum number of hits in all RPC layers for µ and π

with the momentum distributing in 0.8—1.5 GeV/c.

3 Brief description of the artificial

neural network

An artificial neural network[5] is a computational

structure inspired by the study of biological neu-

ral processing. Feed-forward neural networks, also

known as multilayered perceptrons, are most popu-

lar and widely used. The output of a feed-forward

neural network trained by minimizing, for example,

the mean square error function, directly approximates

the Bayesian posterior probability without the need

to estimate the class-conditional probabilities sepa-

rately. A feed-forward neural network (NN) is shown

schematically in Fig. 4. Such networks provide a gen-

eral framework for estimating non-linear functional

mapping between a set of input variables x(x1,x2, · · · ,

xN ) and an output variable O(x) (or a set of output

variables) without requiring a prior mathematical de-

scription of how the output formally depends on the

inputs.

The network is made of neurons characterized by

a bias and weighted links in between, those of links

are called synapses. A layer of neurons makes inde-

pendent computations on the data, so that it receives

and passes the results to another layer. The next layer

may in turn make its independent computations and

pass on the results to yet another layer. Finally, the

processed results of the network can be determined

from the output neurons. As indicated in the sketch,

all neuron inputs to a layer are linear combinations of

the neuron output of the previous layer. For a given

neuron j in layer k, we have the following equation

xk
j = A

(

wk
0j +

Mk−1
∑

i=1

wk
ij

•xk−1
i

)

, (3)

where xk−1
i (i = 1,2, · · · ,Mk−1) represents the input

signal from the previous layer k−1, Mk−1 is the total

number of neurons in layer k−1, wk
ij ’s represent the

synaptic weights of neuron j, the bias term wk
0j (not

shown in Fig. 4) is acquired by adding a new synapse

to neuron j whose input is xk−1
0j = 1. The transfer

from input to output within a neuron is performed

by means of an “activation function” A(x). In gen-

eral, the activation function of a neuron can be zero

(deactivated), one (linear), or non-linear. For a hid-

den layer, a typical activation function used in Eq. (3)

is a sigmoid

A(x) =
1

1+e−x
. (4)

The transfer function of the output layer is usually

linear. As a consequence: an neural network with-

out hidden layer should give identical discrimination

power as a linear discriminant analysis like the Fisher

discriminator. In case of one hidden layer, the neural

network computes a linear combination of sigmoid.

The number of parameters (the synaptic weights

wk
ij ’s in Eq. (3)) need to grow only as the complex-

ity of the problem grows. The parameters are deter-

mined by minimizing an error function, usually the

mean square error between the actual output Op and

the desired (target) output tp,

E =
1

2Np

N
∑

p=1

(Op− tp)2 , (5)

with respect to the parameters. Here p denotes a fea-

ture vector or pattern. The stochastic optimization

algorithm used in learning enables the model to be

improved a little bit for each data point in the training

sample. Neural networks provide a very practical tool

because of the relatively small computational times

required in their training. The fast convergence as

well as the robustness in supervised learning of mul-

tilayered perceptrons are due to efficient and powerful

algorithms developed in recent years.

Good generalization, that is good predictions for

new inputs, is controlled by model complexity, The

traditional approaches used to control model com-

plexity are structure stabilization (optimizing the size

of the network) and regularization. In the former

one starts with large networks and prunes connec-

tions or starts with small networks and adds neurons

as necessary. In the latter, one penalizes complexity

by adding a penalty term to the error function.

There are many new and sophisticated approaches

to achieve good generalization. Here, it is important

to note that the generalization error (g.e.) of an NN

can be decomposed into the sum of the bias-squared

(b2) plus the variance (σ2), i.e., the generalization er-

ror, g.e.=
√

b2 +σ2. The goal is to minimize the g.e.,

that is, finding the best compromise between bias and
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variance. Ensembles of networks, such as committees or stacks, can be used to control bias and variance[5].

Fig. 4. The schematic structure of a multilayered perceptrons’ neural network: the input layer contains N
neurons as input variables (x0

i=1,2,··· ,N ); the output layer contains (two) neurons for signal and background
event classes; in between the input and output layers are a number of k hidden layers with arbitrary number
of neurons (xk

j=1,2,··· ,Mk
).

4 Applying the ANN technique in

PID algorithm at BES000

In this paper, a class of Multilayer Perceptrons

(MLP)[14] network will be applied to BES0 PID algo-

rithm, which is implemented in ROOT[15]. The PID

variables described in Section 2.3 and Section 2.4 are

correlated each other. With no loss of information, a

cell analysis may be not sufficient for the likelihood

method to get an optimal result. As we know, the

correlations of PID variables among sub-detectors are

reasonably small and could be ignored. For example,

the dE/dx measurement and the energy deposit in

EMC have almost no influence on the time of flight

measurements. This allows us to configure the net-

works sequentially.

4.1 The configuration of PID networks

The PID variables selected from each sub-detector

together with the incident momentum and the trans-

verse momentum have been grouped and trained sep-

arately, each sub-detector (the barrel part and the

endcap part) has one output. In this step, the net-

work for each sub-detector is quite simple. Almost

all sub-networks are configured with one hidden layer

containing 2N hidden neurons, where N is the num-

ber of the input neurons. 50 000 single track events

for each particle species with momentum ranging

from 0.1 GeV/c to 1.6 GeV/c and −0.83 < cosθ < 0.83

are subjected to networks, where θ is the incident po-

lar angle. The output values are constrained to be

1, 2, 3, 4 and 5 for electron, muon, pion, kaon and

proton, respectively. The training results for each

sub-detector are shown in Figs. 5(a)—5(d). Since the

offline software system for some of the endcap detec-

tors are not well established now, here and below we

just show the training results for the barrel part of

detectors.

The bands of muon and pion are merged into one

single peak (around 2.5) in the outputs of dE/dx,

TOF and EMC. The information in EMC and MUC

is hard to be applied to kaon and proton samples.

The output of EMC can help to separate muon and

pion slightly. But the output of MUC could separate

muon from hadrons clearly.

The outputs of neural network from sub-detectors

can be combined in several ways to get the near-

optimal discrimination variables. For example, the

probability density functions (PDF) for the resulting

variables can be used as the basis for a likelihood

analysis, or can be used as the input variables for a

sequential network. At present, a conventional like-

lihood analysis based on the neural output variables

and a sequential network analysis are applied in par-

allel to the BES0 PID algorithm. Here, we are only

concerned with the study of the sequential networks.

Basically, the network consists of two input momen-

tum variables and four input PID variables. The mo-

mentum variables are the incident momentum and
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the transverse momentum. The PID variables in-

clude the neural outputs from dE/dx (OdE/dx), TOF

(OTOF), EMC (OEMC) and MUC (OMUC) system (the

barrel part and the endcap part separately). The net-

work is configured with one hidden layer of ten hidden

neurons.

Fig. 5. NN outputs of sub-detectors. (a) dE/dx output; (b) TOF output; (c) EMC output; (d) MUC output.

4.2 Results

Electron, muon, and hadron separations are stud-

ied with several simulated Monte Carlo samples

through different configurations of networks. Cuts

are put on the output of final discrimination variables

(the output of sequential network Oseq). The most

PID interests in BES0 physics program are the e/π,

µ/π and π/K separations.

4.2.1 Muon identification

The muon candidate is required to have response

in µ-counter. The sequential network is trained with

two PID variables: the OMUC and the OEMC. The

µ-ID abilities are studied in different momentum par-

titions by comparing the discrimination results from

OMUC and Oseq. Fig. 6(a) and 6(b) show the vari-

ations of the muon identification efficiency and pion

contamination rate as functions of incident track mo-

mentum, where the track momentum is required to

be greater than the cut-off threshold (∼500 MeV/c).

Above 0.8 GeV/c, the muon identification efficiency

is around 90%, and the pion contamination rate is

about 5%. The additional information from EMC

may help to improve the µ-ID ability.

As experienced in BaBar experiment[16], the addi-

tional variables, e.g., the goodness of muon track fit

and the goodness of the muon track matching to the

extrapolation position from inner track system, may

help to reduce the background contamination rates.

These information will be studied at BES0 in the

future.

4.2.2 Electron identification

Figure 6(c) shows the variations of electron iden-

tification efficiency and pion misidentification rate at

different momentum range by setting cuts on OEMC.

Above 0.6 GeV/c, one can see that the electron-ID

efficiency is greater than 95% while the pion contam-

ination rate can go down to the 10−3 level. The e/π

separation is quite bad for low momentum tracks (less

than 0.4 GeV/c).

Both OdE/dx and OEMC are good discrimina-

tion variables to separate electron from pion above

0.4 GeV/c. The OTOF can separate e/π very effec-

tively below 0.3 GeV/c. The network is trained with

OdE/dx, OTOF and OEMC. As shown in Fig. 6(d),

the network offers a nearly uniform acceptance and

background contamination between 0.25 GeV/c and

1.6 GeV/c. It is an interesting result that the ac-

ceptance hole between 0.2 GeV/c and 0.4 GeV/c has

almost vanished by adding an appropriate cut, where

no detector has clear discrimination power for elec-

tron. The system obviously makes the inference that

the particle has to be an electron if it is not one of
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the others. This is the combined contribution from

the sub-detectors.

4.2.3 π/K separation

As a general view, the proton identification is ex-

tremely good with TOF and dE/dx information at

BES0. Here and below, only the K/π separation is

focused on. As discussed in Section 2, the dE/dx can

identify K/π very effectively below 0.6 GeV/c; the

two-layer TOF can separate K/π up to 0.9 GeV/c.

Fig. 6. PID efficiency and contamination rate in different momentum partitions. (a) µ/π separation with
OMUC; (b) µ/π separation with OMUC and OEMC; (c) e/π separation with OEMC; (d) e/π separation with
OEMC, OTOF and OdE/dx; (e) K/π separation with likelihood method; (f) K/π separation with neural
networks. In (c) and (d), pion contamination rates are enlarged by a factor of 10.

Traditionally, a likelihood method which combines

the TOF and dE/dx information will be applied to

the hadron identification. To construct the PDFs,

data are divided into several bins in momentum and

cosθ partitions to obtain the corresponding resolu-

tions and offsets. Fig. 6(e) shows the variations of

kaon identification efficiency and pion contamination

rate as functions of momentum. In the real world,

there are often tails on distributions due to track con-

fusion, nonlinearities in detector response, and many

other experimental sources which are imperfectly de-

scribed in PDFs. Herein, it is helpful to apply NN

technique in hadron separation.

For hadron separation, the network is trained with

two PID variables: the OTOF and the OdE/dx. The

PID ability is studied with the cuts on the output

of sequential network Oseq. The results are shown in

Fig. 6(f). Both the likelihood method and the neu-

ral network method give the similar results. Below

1 GeV/c, one can see that the kaon-ID efficiency is

greater than 95% while the pion contamination rate is

less than 10%. The K/π separation is extremely good

for low momentum tracks (less than 0.8 GeV/c).

5 Summary

The shapes of PID variables in EMC and MUC

systems are complicated and there maybe exist non-

linear correlations between PID variables. It is dif-

ficult for the likelihood method to construct the

PDFs analytically and handle the correlations prop-

erly. From our studies, good electron-ID and muon-

ID can be easily achieved from the neural network at

BES0 with the full detector information. In a sim-

ple application, e.g., for hadron separation, we get

the similar results from the neural network and the

likelihood method where the PID variables in TOF

and dE/dx systems are quasi-Gaussian, and the cor-

relation between two-layer TOF measurements is ap-

proximately linear. The flexible configuration of PID

networks can be employed in the simple and compli-

cated application.

There are still a lot of factors which have to be

taken into account while applying the artificial neu-

ral network technique in the particle identification

at BES0. For example, one or several input vari-

ables have to be removed due to the imperfect con-

sistency between data and Monte Carlo simulation.

The impurity of training sample may introduce the

additional systematical uncertainties. More detailed

studies are needed in the future. Now the likelihood

and the artificial neural network PID algorithms are

studied in parallel at BES0. The final PID algorithm

will definitely be a combination of all the methods

which have been created and applied in high energy

physics experiment, one way might be by using the
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likelihood method to combine the neural network out-

puts from sub-detectors. Of course, to make the final

decision of PID algorithm, there is still a long way to

go.
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