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Is Ds(2700) a charmed tetraquark state? *

WANG Zhi-Gang(��f)1)

(Department of Physics, North China Electric Power University, Baoding 071003, China)

Abstract In this article, we assume that the Ds(2700) is a tetraquark state, which consists of a scalar diquark

and a vector antidiquark, and calculate its mass with the QCD sum rules. The numerical result indicates that

the mass of the vector charmed tetraquark state is about MV = (3.75±0.18) GeV or MV = (3.71±0.15) GeV

from different sum rules, which is about 1 GeV larger than the experimental data. Such tetraquark component

should be very small in the Ds(2700).
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1 Introduction

Recently Belle Collaboration observed a new res-

onance Ds(2700) in the decay B+ → D̄0Ds(2700) →
D̄0D0K+. The resonance has the mass MV = 2708±
9+11
−10 MeV, the width ΓV = 108± 23+36

−31 MeV, and

the spin-parity 1−[1]. They interpret the Ds(2700)

as a cs̄ meson, the potential model calculations pre-

dict a radially excited 23S1 (cs̄) state with a mass

about (2710−2720) MeV[2]. The resonance Ds(2700)

is consistent with the particle they presented previ-

ously at the 33rd International Conference on High

Energy Physics (ICHEP 06), MV = 2715±11+11
−14 MeV,

ΓV = 115±20+36
−32 MeV and spin-parity 1−[3]. In the

same analysis of the DK mass distribution, Babar

Collaboration observed a broad structure with MV =

2688 ± 4 ± 3 MeV and ΓV = 112 ± 7 ± 36 MeV,

which may the same resonance observed by Belle

Collaboration[4].

In this article, we assume that the vector charmed

meson Ds(2700) is a tetraquark state, which con-

sists of a scalar diquark and a vector antidiquark,

and devote to calculate its mass with the QCD sum

rules[5, 6]. The Ds(2700) lies above the DK thresh-

old, the decay Ds(2700)→D0K+ can take place with

the fall-apart mechanism and it is OZI super-allowed,

which can take into account the large width natu-

rally. Furthermore, whether or not there exists such a

tetraquark configuration which can result in the state

Ds(2700) is of great importance itself, because it pro-

vides a new opportunity for a deeper understanding

of low energy QCD. We explore this possibility, later

experimental data can confirm or reject this assump-

tion.

The article is arranged as follows: we derive the

QCD sum rules for the mass of the Ds(2700) in Sec-

tion 2; in Section 3, numerical result and discussion;

Section 4 is reserved for conclusion.

2 QCD sum rules for the mass of the

Ds(2700)

In the following, we write down the two-point cor-

relation function Πµν(p) in the QCD sum rules,

Πµν(p) = i

∫
d4xeip·x〈0|T {Jµ(x)J+

ν (0)}|0〉 , (1)

Jµ(x) =
εkijεkmn√

2

{
uT

i (x)Cγ5cj(x)ūm(x)×

γ5γµCs̄T
n (x)+(u→ d)

}
. (2)

We choose the vector current Jµ(x) which is con-

structed from a scalar diquark and a vector antidi-

quark to interpolate the vector meson Ds(2700).

Here we take a digression to discuss how to choose

the interpolating currents for the tetraquark states.

We can take either qq-q̄q̄ type or q̄q-q̄q type currents

to interpolate the tetraquark states, they are related
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to each other via Fierz transformation both in the

Dirac spinor and color space[7, 8]. In this article, we

take the qq-q̄q̄ type interpolating current.

The diquarks have five Dirac tensor structures,

scalar Cγ5, pseudoscalar C, vector Cγµγ5, axial vec-

tor Cγµ and tensor Cσµν . From those diquarks, we

can construct six independent currents to interpolate

the charmed tetraquark states with 1−,

J1
µ(x) =

εkijεkmn√
2

{
uT

i (x)Cγ5cj(x)ūm(x)×

γ5γµCs̄T
n (x)+(u→ d)

}
,

J2
µ(x) =

εkijεkmn√
2

{
uT

i (x)Cγµγ5cj(x)ūm(x)×

γ5Cs̄T
n (x)+(u→ d)

}
,

J3
µ(x) =

εkijεkmn√
2

{
uT

i (x)Ccj(x)ūm(x)×

γµCs̄T
n (x)+(u→ d)

}
,

J4
µ(x) =

εkijεkmn√
2

{
uT

i (x)Cγµcj(x)ūm(x)×

Cs̄T
n (x)+(u→ d)

}
,

J5
µ(x) =

εkijεkmn√
2

{
uT

i (x)Cσµνcj(x)ūm(x)×

γ5γνCs̄T
n (x)+(u→ d)

}
,

J6
µ(x) =

εkijεkmn√
2

{
uT

i (x)Cγνγ5cj(x)ūm(x)×

σµνCs̄T
n (x)+(u→ d)

}
,

(3)

and the general current J̃µ(x) can be written as their

linear superposition,

J̃µ(x) =
6∑

i=1

CiJ
i
µ(x) , (4)

where the Ci are some coefficients.

The six interpolating currents can be sorted into

three types, the currents J1
µ(x) and J2

µ(x) are of Cγ5-

Cγµγ5 type, the currents J3
µ(x) and J4

µ(x) are of C-

Cγµ type, the currents J5
µ(x) and J6

µ(x) are of Cσµν -

Cγνγ5 type. We expect the three types interpolat-

ing currents result in three types of masses for the

tetraquark states.

The study with the random instanton liquid

model indicates that the diquarks have masses about

mS = 420± 30 MeV, mA = mV = 940± 20 MeV,

mT = 570±20 MeV[9], we expect the currents J5
µ(x)

and J6
µ(x) interpolate the tetraquark states with

masses larger than the ones for the currents J 1
µ(x)

and J2
µ(x). Instanton induced force results in strong

attraction in the scalar diquark channels and strong

repulsion in the pseudoscalar diquark channels, if the

instantons manifest themselves, the pseudoscalar di-

quarks will have much larger masses than the corre-

sponding scalar diquarks[10], the coupled Schwinger-

Dyson equation and Bethe-Salpeter equation also in-

dicate this fact[11]. Furthermore, the one-gluon ex-

change force leads to significant attraction between

the quarks in the 0+ channels[10]. Although the inter-

polating currents are not unique, the currents J 1
µ(x)

and J2
µ(x) are much better and interpolate tetraquark

states with smaller mass, we can choose either one of

them.

In the conventional QCD sum rules[5], there are

two criteria (pole dominance and convergence of the

operator product expansion) for choosing the Borel

parameter M 2 and threshold parameter s0. For the

tetraquark states, if the perturbative terms have the

main contribution, we can approximate the spectral

density with the perturbative term,

BMΠ ∼A

∫
∞

0

s4e−
s

M2 ds = AM 10

∫
∞

0

t4e−tdt , (5)

where the A are some numerical coefficients, then we

take the pole dominance condition,
∫ t0

0

t4e−tdt

∫
∞

0

t4e−tdt

> 50% , (6)

and obtain the relation,

t0 =
s0

M 2
> 4.7 . (7)

The superpositions of different interpolating currents

can only change the contributions from different

terms in the operator product expansion, and im-

prove convergence, they cannot change the leading

behavior of the spectral density ρ(s)∝ s4 of the per-

turbative term.

For the nonet light scalar mesons below 1 GeV,

if their dominant Fock components are tetraquark

states, even we choose special superposition of dif-

ferent currents to weaken the contributions from the

vacuum condensates to warrant the main contribu-

tion from the perturbative term, we cannot choose

very small Borel parameter M 2 to enhance the pole

term. For small enough Borel parameter M 2, the per-

turbative corrections of order O(αs(M)), O(α2
s (M)),

· · · , may large enough to invalidate the operator prod-

uct expansion.

We can choose the typical energy scale µ = M =

1 GeV, in that energy scale,
√

s0 ≈ 2.2 GeV. There

are many scalar mesons below 2 GeV[12], the contri-

butions are already included at the phenomenological

side. The criterion of pole dominance cannot be fully

satisfied for the tetraquark states with light flavor.

Failure of pole dominance don’t mean non-

existence of the tetraquark states, it just means that

the QCD sum rules, as one of the QCD models, may

have shortcomings. We release some criteria and take

more phenomenological analysis, i.e. we choose larger

Borel parameter M 2 to warrant convergence of the
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operator product expansion and take a phenomeno-

logical cut off to avoid possible comminations from

the high resonances and continuum states[13].

If we insist on retaining pole dominance besides

convergence of the operator product expansion in the

QCD sum rules for the tetraquark states, the hidden

charmed and bottomed tetraquark states, and open

bottomed tetraquark states may satisfy the criterion

in Eq. (7), as they always have larger Borel parameter

M 2 and threshold parameter s0.

For examples, in Ref. [14], the authors take the

X(3872) as hidden charmed tetraquark state and

calculate its mass with the QCD sum rules, the

Borel parameter and threshold parameter are taken

as M 2 = (2.0− 2.8) GeV2 and s0 = (17− 18) GeV2;

in Ref. [15], the authors take the Z(4430) as hidden

charmed tetraquark state and calculate its mass with

M 2 = (2.5 − 3.1) GeV2 and s0 = (23 − 25) GeV2,

furthermore, the authors calculate the corresponding

bottomed one, and choose M 2 = (8.0− 8.3) GeV2

(or M 2 = (8.0− 9.9) GeV2) and s0 = 125 GeV2 (or

s0 = 135 GeV2). In those sum rules, although the win-

dows for the Borel parameters are rather small, the

αs(M) is small enough to warrant convergence of the

operator product expansion, the relation in Eq. (7)

can be well satisfied.

The correlation function Πµν(p) can be decom-

posed as

Πµν(p) = −Π1(p
2)

{
gµν −

pµpν

p2

}
+Π0(p

2)
pµpν

p2
, (8)

due to Lorentz covariance. The invariant functions

Π1 and Π0 stand for the contributions from the vec-

tor and scalar mesons, respectively. In this article,

we choose the tensor structure gµν −
pµpν

p2
to study

the mass of the vector meson.

According to the basic assumption of current-

hadron duality in the QCD sum rules[5], we insert

a complete series of intermediate states satisfying

unitarity principle with the same quantum numbers

as the current operator Jµ(x) into the correlation

function Πµν(p) to obtain the hadronic representa-

tion. After isolating the pole term of the lowest state

Ds(2700), we obtain the following result:

Πµν(p) = − f 2
VM 8

V

M 2
V−p2

{
gµν −

pµpν

p2

}
+ · · · , (9)

where we have used the following definition,

〈0|Jµ(0)|Ds(2700)〉 = fVM 4
Vεµ , (10)

here εµ is the polarization vector of the Ds(2700) and

fV is the residue of the pole.

In the following, we briefly outline the opera-

tor product expansion for the correlation function

Πµν(p) in perturbative QCD theory. The calculations

are performed at large space-like momentum region

p2 � 0, which corresponds to small distance x≈ 0 re-

quired by validity of operator product expansion. We

write down the “full” propagators Sij(x)(the Uij(x)

and Dij(x) for the u and d quarks are obtained with

a simple replacement of the nonperturbative param-

eters) and Cij(x) of a massive quark in the presence

of the vacuum condensates firstly[5];1),

Sij(x) =
iδij 6x
2π

2x4
− δijms

4π
2x2

− δij

12
〈s̄s〉+ iδij

48
ms〈s̄s〉 6x−

δijx
2

192
〈s̄gsσGs〉+ iδijx

2

1152
ms〈s̄gsσGs〉 6x−

i

32π
2x2

Gij
µν(6xσµν +σµν 6x)+ · · · , (11)

Cij(x) =
i

(2π)4

∫
d4ke−ik·x

{
δij

6k−mc

−

gsG
αβ
ij

4

σαβ(6k+mc)+(6k+mc)σαβ

(k2−m2
c)

2
+

π
2

3

〈αsGG

π

〉
δijmc

k2 +mc 6k
(k2−m2

c)
4
+ · · ·

}
, (12)

where 〈s̄gsσGs〉 = 〈s̄gsσαβGαβs〉 and
〈αsGG

π

〉
=

〈αsGαβGαβ

π

〉
, then we contract the quark fields in

the correlation function Πµν(p) with Wick theorem,

and obtain the result:

Πµν(p) = iεkijεk′i′j′εkmnεk′m′n′

∫
d4xeip·x×

Tr
{
γ5γµCST

n′n(−x)Cγνγ5Um′m(−x)
}
×

Tr
{
γ5Cjj′ (x)γ5CUT

ii′(x)C
}

. (13)

Substituting the full s, c and u quark propagators in

above correlation function and completing the inte-

gral in coordinate space, then integrating over the

variable k, we can obtain the correlation function

Π1(p
2) at the level of quark-gluon degrees of freedom:

Π1(p
2) = − 1

61440π
6

∫ 1

0

dt

[
K4

(
7

t3
+

3

t2

)
+

4K3p2

(
1+

3

t
− 4

t2

)]
logK−

msp
2

192π
4

∫ 1

0

dt
[
6(t−1)〈q̄q〉+

(t2 + t−2)〈s̄s〉
]
K logK+

mc〈q̄q〉
192π

4

∫ 1

0

dt

(
1

t
+

2

t2

)
K2 logK−

1) One can consult the last article of Ref. [5] for technical details in deriving the full propagator.
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ms

128π
4

∫ 1

0

dt

[
4

t
〈q̄q〉+

(
1+

1

t

)
〈s̄s〉

]
K2 logK+

mc〈q̄gsσGq〉
128π

4

∫ 1

0

dt

(
1+

1

t

)
K logK−

ms

384π
4

∫ 1

0

dt
[
(3t+1)〈s̄gsσGs〉+

12〈q̄gsσGq〉
]
K logK+

msp
2

384π
4

∫ 1

0

dt
[
(t− t3)〈s̄gsσGs〉+

6(t− t2)〈q̄gsσGq〉
]
logK−

〈q̄q〉〈s̄s〉
6π

2

∫ 1

0

dtK logK+

〈q̄q〉〈s̄s〉p2

12π
2

∫ 1

0

dt(t− t2) logK+

mcms

24π
2

∫ 1

0

dt [2〈q̄q〉2 + t〈q̄q〉〈s̄s〉] logK−

〈q̄q〉〈s̄gsσGs〉+〈s̄s〉〈q̄gsσGq〉
24π

2

∫ 1

0

dtt logK , (14)

where K(p2) = (1− t)m2
c − t(1− t)p2.

We carry out the operator product expansion to

the vacuum condensates adding up to dimension-8. In

calculation, we take the assumption of vacuum satu-

ration for high dimension vacuum condensates, they

are always factorized to lower condensates with vac-

uum saturation in the QCD sum rules, factorization

works well in large Nc limit. In this article, we take

into account the contributions from the quark con-

densates, mixed condensates, and neglect the contri-

butions from the gluon condensate. In calculation, we

observe the contributions from the gluon condensate

are suppressed by large denominators and would not

play any significant roles.

Once analytical results are obtained, we can take

the current-hadron duality below the threshold s0

and perform Borel transformation with respect to the

variable P 2 = −p2, finally obtain the following sum

rules:

f 2
VM 8

V exp

{
−M 2

V

M 2

}
=

∫ s0

m2
c

ds
ImΠ(s)

π

exp
{
− s

M 2

}
,

(15)

M 2
V =

∫ s0

m2
c

ds
ImΠ(s)

π

sexp
{
− s

M 2

}/

∫ s0

m2
c

ds
ImΠ(s)

π

exp
{
− s

M 2

}
, (16)

ImΠ(s)

π

=
1

61440π
6

∫ 1

∆

dt

[
K4

(
7

t3
+

3

t2

)
+4K3s

(
1+

3

t
− 4

t2

)]
+

mss

192π
4

∫ 1

∆

dt [6(t−1)〈q̄q〉+(t2 + t−2)〈s̄s〉]K−

mc〈q̄q〉
192π

4

∫ 1

∆

dt

(
1

t
+

2

t2

)
K2 +

ms

128π
4

∫ 1

∆

dt

[
4

t
〈q̄q〉+

(
1+

1

t

)
〈s̄s〉

]
K2−

mc〈q̄gsσGq〉
128π

4

∫ 1

∆

dt

(
1+

1

t

)
K+

ms

384π
4

∫ 1

∆

dt [(3t+1)〈s̄gsσGs〉+12〈q̄gsσGq〉]K−

mss

384π
4

∫ 1

∆

dt [(t− t3)〈s̄gsσGs〉+6(t− t2)〈q̄gsσGq〉]+ 〈q̄q〉〈s̄s〉
6π

2

∫ 1

∆

dtK− 〈q̄q〉〈s̄s〉s
12π

2

∫ 1

∆

dt(t− t2)−

mcms

24π
2

∫ 1

∆

dt [2〈q̄q〉2 + t〈q̄q〉〈s̄s〉]+ 〈q̄q〉〈s̄gsσGs〉+〈s̄s〉〈q̄gsσGq〉
24π

2

∫ 1

∆

dtt , (17)

where ∆ =
m2

c

s
.

3 Numerical result and discussion

The input parameters are taken to be the stan-

dard values 〈q̄q〉=−(0.24±0.01 GeV)3, 〈s̄s〉= (0.8±
0.2)〈q̄q〉, 〈q̄gsσGq〉 = m2

0〈q̄q〉, 〈s̄gsσGs〉 = m2
0〈s̄s〉,

m2
0 = (0.8± 0.2) GeV2, ms = (0.14± 0.01) GeV and

mc = (1.4 ± 0.1) GeV[5, 6, 16]. For the multiquark

states, the contribution from terms with the gluon

condensate

〈
αsGG

π

〉
is of minor importance[13], and

the contribution from the

〈
αsGG

π

〉
is neglected here.

From Table 1, we can see that the dominating con-

tribution comes from the perturbative term, (a piece

of) standard criterion of the QCD sum rules can be

satisfied. If we change the Borel parameter in the

interval M 2 = (5—7) GeV2, the contributions from

different terms change slightly.

Although the contributions from the terms con-

cerning the quark condensates and mixed conden-

sates are rather large, however, they are canceled out

with each other, the net contributions are of minor
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importance. Which is in contrast to the sum rules

with other interpolating currents constructed from

the multiquark configurations, where the contribution

comes from the perturbative term is very small[17],

the main contributions come from the terms with

the quark condensates 〈q̄q〉 and 〈s̄s〉, sometimes the

mixed condensates 〈q̄gsσGq〉 and 〈s̄gsσGs〉 also play

important roles, for example, the first three articles

of the Ref. [13]. One can choose special superposition

of different currents to weaken the contributions from

the vacuum condensates to warrant the main contri-

bution from the perturbative term, it is somewhat of

fine-tuning.

Table 1. The contributions from different terms
in Eq. (15) for s0 = 16 GeV2 and M

2 =
6 GeV2.

perturbative term +96%

〈q̄q〉, 〈s̄s〉 +33%

〈q̄gsσGq〉, 〈s̄gsσGs〉 −10%

〈q̄q〉2, 〈q̄q〉〈s̄s〉 −24%

〈q̄q〉〈s̄gsσGs〉, 〈q̄gsσGq〉〈s̄s〉 +4%

The values of the vacuum condensates have been

updated with the experimental data for τ decays, the

QCD sum rules for the baryon masses and the anal-

ysis of the charmonium spectrum[16]. As the main

contribution comes from the perturbative term, un-

certainties of the vacuum condensates can only result

in very small uncertainty for numerical value of the

mass MV, the standard values and updated values

of the vacuum condensates can only lead to results

of minor difference, we choose the standard values of

the vacuum condensates in the calculation.

In Fig. 1, we plot the value of the MV with vari-

ations of the threshold parameter s0 and Borel pa-

rameter M 2. If
√

s0 6 3.55 GeV, MV > s0, we cannot

take into account all contributions from the Ds(2700),

furthermore, the MV changes quickly with the vari-

ation of the Borel parameter M 2, the threshold pa-

rameter s0 should be chosen to be
√

s0 > 3.6 GeV.

The value of the MV is almost independent on the

Borel parameter M 2 at about
√

s0 = 4.0 GeV. In

this article, the threshold parameter s0 is chosen to

be s0 = (16± 2) GeV2. It is large enough for the

Breit-Wigner mass MV = 2708± 9+11
−10 MeV, width

ΓV = 108±23+36
−31 MeV. However, the standard crite-

rion of pole dominance cannot be satisfied, the con-

tribution from the pole term is less than 13%. If

one insists that the multiquark states should sat-

isfy the same criteria as the conventional mesons

and baryons, the QCD sum rules for the (light and

charmed) tetraquark states should be discarded. For

detailed discussions about how to select the Borel pa-

rameters and threshold parameters for the multiquark

states, one can consult Ref. [13].

Fig. 1. MV with Borel parameter M
2 and

threshold parameter s0.

Fig. 2. MV with Borel parameter M
2 from Eq. (16).

Taking into account all the uncertainties, we ob-

tain the value of the mass of the Ds(2700), which is

shown in Fig. 2,

MV = (3.75±0.18) GeV . (18)

It is obvious that our numerical value is larger

than the experimental data MV = 2.708 GeV, the

vector current can interpolate a charmed tetraquark

state with the mass about MV = 3.75 GeV or even

larger, such tetraquark component should be small in

the Ds(2700).

If one wants to retain the pole dominance of the

conventional QCD sum rules, we take the replacement

for the weight functions in Eqs. (15,16),

exp
{
− s

M 2

}
→ exp

{
−

( s

M 2

)2
}

,

exp

{
−M 2

V

M 2

}
→ exp

{
−

(
M 2

V

M 2

)2
}

,

(19)

and obtain new QCD sum rules for the mass of the

vector tetraquark state.

f 2
VM 8

V exp

{
−

(
M 2

V

M 2

)2
}

=

∫ s0

m2
c

ds
ImΠ(s)

π

exp

{
−

( s

M 2

)2
}

, (20)
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M 4
V =

∫ s0

m2
c

ds
ImΠ(s)

π

s2 exp

{
−

( s

M 2

)2
}/

∫ s0

m2
c

ds
ImΠ(s)

π

exp

{
−

( s

M 2

)2
}

. (21)

Fig. 3. MV with Borel parameter M
2 from Eq.( 21).

As the main contributions come from the per-

turbative term, the hadronic spectral density above

and below the threshold can be successfully approx-

imated by the perturbative term. If we take typi-

cal values for the parameters
√

s0 = 4.0 GeV and

M 2 = (7—9) GeV2, the contribution from pole term

in Eq. (20) is dominating, about 53%—84%. Taking

into account all the uncertainties, we obtain the value

of the mass of Ds(2700), which is shown in Fig. 3,

MV = (3.71±0.15) GeV . (22)

4 Conclusion

In this article, we assume that the Ds(2700) is a

tetraquark state which consists of a scalar diquark

and a vector antidiquark, and calculate its mass with

the QCD sum rules. The numerical result indi-

cates that the mass of vector charmed tetraquark

state is about MV = (3.75 ± 0.18) GeV or MV =

(3.71 ± 0.15) GeV, which is about 1 GeV larger

than the experimental data. Such tetraquark com-

ponent should be very small in the Ds(2700), the

dominating component may be the cs̄ state, we can

take up the method developed in Ref. [18] to study

the mixing between the two-quark component and

tetraquark component with the interpolating current

Ĵµ(x) = cosθJµ(x) + sinθ〈q̄q〉s̄(x)γµc(x). The decay

Ds(2700)→D0K+ can occur mainly through creation

of the uū pair in the QCD vacuum. We resort to the
3P0 model to calculate the decay width[19], although

the 3P0 model is rather crude.
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