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Three-body model for neutron-halo nuclei *
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Abstract The neutron-halo nuclei, 11Li, 14Be, and 17B, are studied in the three-body model. The Yukawa

interaction is used to describe the interaction of the two-body subsystem. For given parameters of the two-

body interaction, the properties of these neutron-halo nuclei are calculated with the Faddeev equations and

the results are compared with those in the variational method. It is shown that the method of the Faddeev

equations is more accurate. Then the dependencies of the two- and three-body energies on the parameters are

studied. We find numerically that two- and three-body correlations differ greatly from each other with the

variation of the intrinsic force range.
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1 Introduction

It has been more than twenty years since the neu-

tron halo of the nucleus 11Li was reported by Tani-

hata in 1985[1, 2]. The nucleus 11Li is a very neutron-

rich nucleus, whose two neutron separation energy

is approximately 300 keV and whose valence neu-

trons have a large probability in the s-wave compo-

nent. Thus it has an abnormally extended distribu-

tion in space and this leads to narrow momentum

distribution after fragmentation. The discovery of
11Li’s exotic characters stimulates much work on the

study of the nuclei far from stability[3—10]. In exper-

iment, with the development of radioactive nuclear

beam facilities, more and more nuclei very far away

from stability line, i.e., very neutron-rich or proton-

rich nuclei, are produced in laboratory. This pro-

vides much opportunity to study neutron haloes. Ac-

companied by the improvement of experimental tech-

niques, great progress has also been made in the-

ory. The shell model, the Hartree-Fock method, the

relativistic mean field (RMF) method and the clus-

ter model have been developed and applied to study

such nuclei. Up to now, a lot of neutron-halo nuclei,

such as 6He, 8He, 11Li, 11Be, 14Be, 17B, 19B, 19C and
22C, have been suggested and investigated[11—17]. The

cluster model[18—22] has an advantage in investigating

the properties of neutron-halo nuclei, for example,

the binding energy, matter distribution, root-mean-

square radius, and so on. The three-body model is

very suitable to study two-neutron haloes. This kind

of neutron-halo nuclei can be treated as a system com-

posed of three-particles, an inert core and two outer

correlated neutrons. Usually the three-body system

is bound while each two-body subsystem is unbound,

so this kind of neutron-halo nuclei are called the Bor-

romean nuclei.

2 Two-body interactions and the

three-body model

There are various forms for two-body interactions,

such as Gaussian potentials, Woods-Saxon potentials,

exponential potentials and Yukawa potentials. Each

of them should reproduce the low-energy properties

of the two-body subsystems. Three-body Schrödinger

equations and Faddeev equations are equivalent in de-

scribing the quantum three-body systems, and are
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used widely. In particular, the Faddeev equations

are very suitable to describe a three-body system and

the technique to solve them has also been developed

greatly[18—20]. Besides, the variational Schrödinger

equation method has been improved by Z. Z. Ren

et al.[21—23] to study neutron haloes, which is more

smart and can give reasonable physical explanation

on some aspects of neutron haloes.

In the present article, a kind of two-body Yukawa

interaction is adopted for both neutron-core interac-

tion and neutron-neutron interaction. The method

of the Faddeev equations is applied to study the

two-neutron haloes, and the results are compared

with those calculated with the variational method[22].

Based on these, the nuclei 11Li, 14Be, and 17B are

studied. By developing the computer code of solving

the Faddeev equations, we get the two-body resonant

energy and the three-body energy for different pa-

rameters.

The nuclei, 11Li, 14Be, and 17B, are treated in the

same way here. Therefore, we’ll take 11Li for example

to give an explanation on the details of the calcula-

tion. The nucleus 11Li is treated as a three-body sys-

tem, i.e., an inert 9Li core and two valence neutrons.

As the first step to develop the Faddeev code, the rela-

tive angular momenta of all the two-body subsystems

are assumed to be zero, i.e., only s-wave two-body

interactions are included. This agrees with the fact

that the valence neutrons of the neutron-halo nuclei

usually have a rather large s-wave component.

The neutron-neutron interaction is chosen as a

Yukawa potential that can reproduce the low-energy

properties of the two-neutron subsystem in a singlet

s-state

V (r) =−147.484sb
−2 b

r
exp

(

−2.1196
r

b

)

. (1)

where r is the distance between the two valence

neutron, s=0.949 is the well-depth parameter, and

b=2.06±0.21 (fm) is the intrinsic force range[24].

The neutron-core interaction is in the form of em-

pirical central interaction[22]

V (r) =−147.484sc

Nc +1

2Nc

b
−2
c

bc

r
exp

(

−2.1196
r

bc

)

.

(2)

where sc is the well-depth parameter, bc is the in-

trinsic force range and Nc is the mass number of the

core. Here sc <1 in order to guarantee that there

is no bound state for the two-body subsystems, and

bc should be adjusted to reproduce the experimental

two-body resonant energy approximately.

The Faddeev equations for the three-body systems

write






T1 +V1−E E V1

V2 T2 +V2−E V2

V3 V3 T3 +V3−E













Ψ1

Ψ2

Ψ3






= 0.

(3)

where Vi = Vjk are the two-body interactions, Ti is

the kinetic operator expressed in a given Jacobi coor-

dinate set, E is the eigenenergy of the three-body

system and Ψi is the eigenfunction in a given Ja-

cobi coordinate set. In this article, S2n = −E is

the two-neutron separation energy of the neutron-

halo nucleus as a three-body system. The full three-

body wavefunction is Ψ = Ψ1 + Ψ2 + Ψ3, where each

component wavefunction Ψi is defined by the above

equations. The coupled equations are solved with hy-

perspherical harmonics expansion method which has

been stated detailedly in the previous reference[20].

3 Numerical calculations and results

The ground state properties of 11Li, 14Be, and 17B

have been studied for given parameters sc, bc with

the variational method[22]. The calculations with the

same parameters are performed here by solving the

Faddeev equations. The results are listed in Table 1.

The experimental energies E
exp
0 of the three-body sys-

tems are cited from Ref. [25], and E
exp
0 = −S2n (S2n

is the two-neutron separation energy). Eth1
0 and Eth2

0

are the theoretical eigenenergies calculated with the

variational method and with the method of Faddeev

equations respectively. rc is the root-mean-square

(RMS) matter radius of the core, which comes from

experiment, and Rm is the RMS matter radius of the

neutron-halo nuclei. Rexp
m , Rth1

m and Rth2
m are the ex-

perimental value, theoretical value computed with the

variational method and with the method of Faddeev

equations respectively. It is clearly seen from Table 1

that the three-body energies of the ground states here

are about 0.17 MeV smaller than those in Ref. [22].

Because the three-body systems are more bound here,

the corresponding RMS matter radii are smaller than

those in Ref. [22]. The difference between the two cal-

culations is not accidental. The Faddeev calculation

is more accurate than the variational calculation.

Table 1. Numerical results for 11Li, 14Be, and 17B with the same parameters as those in Ref. [22].

sc bc E
exp
0 /MeV rc/fm R

exp
m /fm Eth1

0 /MeV Rth1
m /fm Eth2

0 /MeV Rth2
m /fm

11Li 0.89 5.0 −0.300(±0.019) 2.31 3.10(±0.17) −0.36 3.18 −0.54 2.95
14Be 0.99 5.0 −1.26(±0.13) 2.57 3.10(±0.30) −0.90 2.90 −1.07 2.85
17B 0.98 5.0 −1.34(±0.17) 2.50 3.00(±0.40) −0.84 2.81 −1.01 2.76
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Thus, the wavefunction calculated from the coupled

Faddeev equations is closer to the real one, and the

eigenenergy of the three-body system is lower.

There are two parameters, sc and bc, in the Fad-

deev calculation. We will take 11Li for example in or-

der to study the dependence of the theoretical results

on the two parameters. First we will study Eres., the

lowest resonant energy of the two-body subsystem.

The two-body system composed of a 9Li core and a

neutron is unbound. According to experiment, the

one-neutron separation energy Sn = −25± 15 keV,

i.e., the lowest resonant energy of the system is

25±15 keV. sc is varied from 0.8 to 1.0 and bc is varied

from 3 fm to 8 fm in order to study the dependence of

Eres. on them. Three dimensional plot of Eres. against

sc and bc is displayed in Fig. 1. It is obviously seen

that Eres. decreases with the increase of bc for a given

sc and Eres. decreases with the increase of sc for given

bc.

Fig. 1. The lowest two-body resonant energy
against sc and bc for the subsystem of the 9Li
core and the neutron.

Then we study the dependence of the three-body

energy E0 on sc and bc. The three dimensional plot of

E0 against sc and bc is displayed in Fig. 2. It is seen

that E0 increases with the increase of bc for a given

sc and E0 decreases with the increase of sc for a given

bc. Thus Eres. and E0 have similar dependence on sc,

but have completely different dependence on bc. The

opposite dependence on bc comes from the discrep-

ancy of the nature of the two-body and the three-

body correlations. The two-body resonant energy is

determined by the behavior of the Yukawa potential

in the distance, while the three-body energy has a

strong correlation with the well-depth of the Yukawa

potential near the origin.

Fig. 2. The three-body energy against sc and
bc for 11Li.

Considering both the two-body resonant energy

and the three-body energy, we get a better set of

parameters to describe 11Li as a three-body system,

sc=0.88, bc=6.1 fm. The RMS matter radius of 11Li

is consistent with the experimental value. The RMS

matter radius of 11Li is much larger than that of the
9Li core, thus the halo character of 11Li is displayed

through the computation.
14Be and 17B are treated in the same way with

11Li. sc =0.91 and bc =3.5 is better to describe 14Be.

The calculated RMS matter radius of 14Be is 2.75 fm

which is smaller than the experimental value but still

in the acceptable range. sc =0.94 and bc =3.8 is pre-

ferred for 17B whose calculated RMS matter radius is

2.66 fm. All the three preferred sets of parameters for
11Li, 14Be and 17B are listed in Table 2 respectively.

The theoretical values, Eth
res., Eth

0 and Rth
m , are listed

in the table. It is clearly seen that the well-depth

parameter sc of 11Li is smaller than that of 14Be and
17B, while the intrinsic force range parameter bc of
11Li is bigger than that of the other two. It is reason-

able to conclude that the core-neutron potential for
11Li is shallower and has a larger force range. Hence,
11Li has more loosely bounded valence neutrons and

more extended matter distribution in space.

Table 2. New calculation for 11Li, 14Be, and 17B with suitable parameters.

sc bc/fm E
exp
res./keV E

exp
0 /MeV E

th
res./keV E

th
0 /MeV R

th
m /fm

11Li 0.88 6.1 25±15 −0.300(±0.019) 36 −0.30 3.17
14Be 0.91 3.5 100±70 −1.26(±0.13) 51 −1.26 2.75
17B 0.94 3.8 40±60 −1.34(±0.17) 17 −1.34 2.66
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4 Summary

In summary, we have investigated the neutron

haloes in 11Li, 14Be, and 17B. These nuclei are as-

sumed to be with a three-body structure. The inter-

actions of all the subsystems are chosen as Yukawa

interactions which can reproduce the corresponding

low-energy properties. By solving the coupled Fad-

deev equations, we get the three-body energy and the

root-mean-square matter radius of the system. With

the same parameters as those of Ref. [22], we perform

calculations for the above nuclei, and get more accu-

rate results than those in the variational method. We

vary the parameters sc and bc and investigate the de-

pendence of the two- and three-body information on

the parameters. We find numerically that the two-

and three-body correlations differ greatly from each

other with the variation of bc. To fit the two-body

resonant energy, three-body energy and RMS matter

radius, a preferred set of parameters is given. We

find that the suitable parameters can reasonably re-

produce the properties of 11Li, 14Be, and 17B. The

development of the codes solving the Faddeev equa-

tions is still in progress.
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