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Model with strong γ4 T -violation *
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Abstract We extend the T violating model of the paper on “Hidden symmetry of the CKM and neutrino-

mapping matrices” by assuming its T -violating phases χ↑ and χ↓ to be large and the same, with χ =χ↑ =χ↓.

In this case, the model has 9 real parameters: α↑, β↑, ξ↑, η↑ for the ↑-quark sector, α↓, β↓, ξ↓, η↓ for the ↓

sector and a common χ. We examine whether these nine parameters are compatible with ten observables: the

six quark masses and the four real parameters that characterize the CKM matrix (i.e., the Jarlskog invariant

J and three Eulerian angles). We find that this is possible only if the T violating phase χ is large, between

−120◦ to −135◦. In this strong T violating model, the smallness of the Jarlskog invariant J ∼= 3× 10−5 is

mainly accounted for by the large heavy quark masses, with
mc

mt
<

ms

mb
≈ 0.02, as well as the near complete

overlap of t and b quark, with (c|b)=−0.04.
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1 Introduction

In a previous paper on the “Hidden symmetry of

the CKM and neutrino-mapping matrices”[1], we have

posited a mass-generating HamiltonianH↑+H↓ where

H↑ =α↑|q↑3 −ξ↑q↑2 |2 +β↑|q↑2 −η↑q↑1 |2 +β↑|q↑3 −ξ↑η↑q↑1 |2

H↓ =α↓|q↓3 −ξ↓q↓2 |2 +β↓|q↓2 −η↓q↓1 |2 +β↓|q↓3 −ξ↓η↓q↓1 |2
(1.1)

with α, β, ξ, η real. This conserves T and leads

to zero masses for the light quarks u and d. We

then modified (1.1) by replacing ξ↑, ξ↓ with the cor-

responding T violating factors ξ↑e
iχ↑ and ξ↓e

iχ↓ . To

first order in χ↑ and χ↓ we found a relation of propor-

tionality between J , the Jarlskog invariant measur-

ing T -violation, and a linear combination of square

roots of the light masses. The ratio agreed roughly

with known values. We shall call this the “weak γ4-

model” because to make the calculation we assumed

χ↑, χ↓ to be small.

There were two reasons for dissatisfaction with

this model. First, why not introduce the phase factor

into η or ξη, yielding different physics? And second,

when we estimated not only J but the individual

matrix elements of UCKM, we found that the data re-

quired χ↑ and χ↓ to be large angles, not small.

We now present a new model, the “strong γ4-

model”. In this model we introduce phase factors

independently into all three terms, but require them

to have the same values in H↑ and H↓. Thus we take

the mass-generating Hamiltonian to be H↑+H↓ where

H↑ = α↑|q↑3 −ξ↑eiρq↑2 |2 +β↑|q↑2 −η↑eiωq↑1 |2+
β↑|q↑3 −ξ↑η↑e−iτq↑1 |2

H↓ = α↓|q↓3 −ξ↓eiρq↓2 |2 +β↓|q↓2 −η↓eiωq↓1 |2+
β↓|q↓3 −ξ↓η↓e−iτq↓1 |2

. (1.2)

It is now easily seen that the masses and CKM ma-

trix depend on the phases only through the sum

χ = ρ+ ω+ τ . Accordingly, without loss of gener-

ality, we set ρ = ω = 0, τ = χ. The mass-generating

Hamiltonian can then be written as

(

q̄↑1 , q̄
↑
2 , q̄

↑
3

)

M↑







q↑1

q↑2

q↑3






+

(

q̄↓1 , q̄
↓
2 , q̄

↓
3

)

M↓







q↓1

q↓2

q↓3







where q↑i , q
↓
i and q̄↑i , q̄

↓
i are related to the correspond-

ing Dirac field operators ψ(qi(↑)), ψ(qi(↓)) and their

hermitian conjugate ψ†(qi(↑)), ψ†(qi(↓)) by

q↑/↓
i =ψ(qi(↑ / ↓)) and q̄↑/↓

i =ψ†(qi(↑ / ↓))γ4, (1.3)
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M↑/↓ =







βη2(1+ξ2) −βη −βξηeiχ

−βη β+αξ2 −αξ
−βξηe−iχ −αξ α+β







↑/↓

, (1.4)

with the arrow-subscripts ↑, ↓ referring to α, β, ξ, η,

but not to χ.

In diagonalizing (1.4) we do not assume, as in the

weak γ4-model, that χ is small. We find that the

smallness of J is mainly accounted for by the large

heavy masses with

mc

mt

<
ms

mb

≈ 0.02 (1.5)

and by the nearly complete overlap of the statevectors

for t and b since

|(u|b)|< |(c|b)| ∼=0.04. (1.6)

We have been able to carry out complete calculations

in which the only approximations are based on the

smallness of
ms

mb

,
mc

mt

and (c|b). These calculations

are described in Sections 2 and 3; we give here a brief

outline.

We diagonalize M↑ and M↓ with the aid of pa-

rameters r↑,↓, B↑,↓, Φ↑,↓, S, L to be defined in the

next two sections. They are shown there to satisfy

the following ten equations (to first order in small

quantities):

1−r2↑
r2↑

sin2B↑ =
4mumc

(mc−mu)2
, (1.7)

1−r2↓
r2↓

sin2B↓ =
4mdms

(ms−md)2
, (1.8)

sin2 1

2
χ=

1−r2↑
sin2 2Φ↑

=
1−r2↓

sin2 2Φ↓

, (1.9)

L=

√
msmd

mb

−
√
mcmu

mt

, (1.10)

S = sin(Φ↑−Φ↓) = (c|b), (1.11)

|(u|b)+S sin
1

2
B↑|2 =L2 cos2

1

2
B↑, (1.12)

Im(u|b) =−L
cos

1

2
B↑ cos

1

2
χ

r↑
(1.13)

and

(u|s) = sin
1

2
(B↓−B↑). (1.14)

Our strategy of solution is as follows. We take

ms, mc, mb, mt, as well as (u|s), (u|b) and (c|b),
to be given from data (see Table 1). Then we have

eleven unknowns r↑,↓, B↑,↓, Φ↑,↓, S, L, χ, md, mu

constrained by ten independent equations given above

(with (1.9) and (1.11), each counted as two equa-

tions). Taking a trial value of sin
1

2
B↑, we are able

to solve numerically for the other ten unknowns by

a self-correcting double iteration that converges to

4 decimal stability after 36 = 6 × 6 passes. We

find that mu is particularly sensitive to variations

in sin
1

2
B↑; a variation of 30% in the latter carries

mu through the whole of its experimental range from

1.5 to 3.0 MeV/c2. Meanwhile md varies by only

25%, from 5.2 to 6.5 MeV/c2, well within the ex-

perimental range, 3.0 to 8.0 MeV/c2. The value of

χ must be taken as negative and is in the neighbor-

hood of −125◦, between −120◦ and −135◦. We have

also tried deviations in ms, mb, (c|b), Re(u|b) and

Im(u|b). Only in the case of ms does it appear that

a maximal deviation (−25%) from the “best value”

might push md outside the range given by data. (See

Tables 1 and 2, and Fig. 1).

Table 1∗.

Parameter “Best” value

ms 95 MeV

mb 4.5 GeV

(c|b) 0.04

Re(u|b) 0.002

Im(u|b) −0.003

∗These values are used to obtain the top two rows in
Table 2.

Fig. 1. md versus mu for ms =95 MeV, (c|b) =
0.04, (u|b) = 0.002−0.003i and mb =4.2 GeV,
4.5 GeV and 4.7 GeV.

The next two sections are devoted to defining the

parameters that appear in (1.7)—(1.14) and proving

that these equations are satisfied. In Section 2, we

discuss the separate diagonalization of M↑ and M↓,

and in Section 3, we examine the CKM matrix.

In Section 4, we discuss briefly a third model[2],

which we may call a iγ5 model, because its Hamilto-

nian contains a term in iγ4γ5 as well as the usual one

in γ4.
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Table 2. Values of mu, md and χ calculated from the strong γ4-model∗.

Input parameters mu/MeV md/MeV cos
1

2
χ

1.45 5.18 0.487
As in Table 1

3.16 6.50 0.428
1.39 5.43 0.479

Table 1 except ms = 85 MeV
3.29 6.86 0.418
1.52 5.00 0.490

Table 1 except ms = 105 MeV
3.09 6.22 0.433
1.63 4.83 0.483

Table 1 except mb = 4.2 GeV
3.33 6.02 0.427
1.61 5.68 0.476

Table 1 except mb = 4.7 GeV
3.53 7.14 0.417
1.40 4.86 0.507

Table 1 except (c|b) = 0.035
2.98 5.96 0.454
1.51 5.52 0.468

Table 1 except (c|b) = 0.045
3.36 7.07 0.405
1.63 4.74 0.525

Table 1 except Re(u|b) = 0.0015
3.33 5.96 0.463
1.72 6.09 0.432

Table 1 except Re(u|b) = 0.0025
2.96 7.06 0.397
1.64 4.93 0.428

Table 1 except Im(u|b) =−0.0025
2.75 5.81 0.389
1.73 5.96 0.510

Table 1 except Im(u|b) =−0.0035
2.93 6.83 0.473

∗The values of five input parameters are taken as in Table 1, except for single departures as shown in the left-hand column
here. For each setting of the input parameters, there is a one-parameter family of solutions of Eqs. (1.7)—(1.14). We show two
members of each family, chosen roughly to span the experimental range of mu from 1.5 to 3.0 MeV. The corresponding values of
md stay within its experimental range from 3 to 8 MeV, and χ remains large from −120◦ to −135◦.

2 Diagonalization of M↑ and M↓

In this section, we shall drop the arrow-subscripts

and write (1.4) as

M =







T 2β −Tβ cosΦ −Tβ sinΦeiχ

−Tβ cosΦ α tan2Φ+β −α tanΦ

−Tβ sinΦe−iχ −α tanΦ α+β






,

(2.1)

where

Φ= tan−1 ξ , (2.2)

T = η
√

1+ξ2 , (2.3)

so that T 2β = βη2(1+ ξ2), sinΦ= ξ/
√

1+ξ2, cosΦ=

1/
√

1+ξ2 and (2.1)=(1.4). We denote the eigenval-

ues of M by ml, mm, mh (light, medium, heavy), and

seek a unitary matrix W (with WW † = 1) such that

M = W







ml 0 0

0 mm 0

0 0 mh






W †. (2.4)

The W matrix will be built up in stages, as we shall

discuss. First we isolate the heavy mass by writing

M =Ω







(n)
L

0

L∗ 0 µh






Ω† , (2.5)

where

Ω† =







1 0 0

0

0
eiΦτy






, (2.6)

µh =α sec2Φ+β , (2.7)

L=Tβ cosΦsinΦ(1−eiχ) (2.8)

and

(n) =

β





T 2 −T (cos2Φ+sin2Φeiχ)

−T (cos2Φ+sin2Φe−iχ) 1



 .

(2.9)

Thus, (2.1) can be obtained by a simple substitution

of (2.6)—(2.9) into (2.5).

Next, we diagonalize the 2×2 matrix (n) of (2.9)

by setting

cos2Φ+sin2Φeiχ = reiA , (2.10)

with r, A both real. Then

(n) = β

(

T 2 −TreiA

−Tre−iA 1

)

=

e
1

2
iτzAe−

1

2
iτyB

(

µl 0

µm

)

e
1

2
iτyBe−

1

2
iτzA ,

(2.11)

provided that

µm +µl =β(1+T 2),

(µm−µl)cosB=β(1−T 2), (2.12)

(µm−µl)sinB= 2βTr.
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By quadratic combination of (2.12) we obtain

µmµl =β2T 2(1−r2); (2.13)

then, by dividing the above equation by the square of

the last line of (2.12), we have

4µmµl

(µm−µl)2
=

1−r2
r2

sin2B , (2.14)

which leads to (1.7) and (1.8).

Also, by applying the Law of Sines to the complex

triangle described by (2.10), followed by trigonomet-

ric identities, we find

cos

(

1

2
χ−A

)

=
cos

1

2
χ

r
, (2.15)

a relation that will be useful later.

Applying (2.11) to (2.5), we now have

M =ΩV×














µl 0 L∆∗ cos
1

2
B

0 µm −L∆∗ sin
1

2
B

L∗∆cos
1

2
B −L∗∆sin

1

2
B µh















V †Ω†,

(2.16)

where

∆= e
1

2
iA (2.17)

and

V † =







(

e
1

2
iτyBe−

1

2
iτzA

)

0

0

0 0 1






. (2.18)

Thus M is almost diagonalized. Let us study the

magnitude of L. From (2.13) and (2.10) we find

µmµl =β2T 2(1−r2) = 2β2T 2(1−cosχ)cos2Φsin2Φ

(2.19)

and comparing this with (2.8) we have

|L|= 2|Tβ cosΦsinΦsin
1

2
χ|=√

µmµl. (2.20)

Hence, if we write














µl 0 L∆∗ cos
1

2
B

0 µm −L∆∗ sin
1

2
B

L∗∆cos
1

2
B −L∗∆sin

1

2
B µh















=

P







ml 0 0

0 mm 0

0 0 mh






P †

(2.21)

the elements of P will differ from those of the unit

matrix by O

[√
mlmm

mh

]

� 1. A careful examination

shows that all the m’s may be approximated by µ’s;

in particular, we also have

∣

∣

∣

∣

µl

ml

−1

∣

∣

∣

∣

∼O

[

mm

mh

]

. There-

fore (2.14) becomes

4mmml

(mm−ml)2
=

1−r2
r2

sin2B (2.22)

and (1.7) and (1.8) are established.

Also, (1.9) is a direct consequence of (2.13) and

(2.20). We may take (1.10) as the definition of L, and

from (2.20) we may write it as

L=
|L↓|
mb

− |L↑|
mt

. (2.23)

The first equality of (1.11) is the definition of S. Thus

what remains is to establish the second part of (1.11),

and (1.12)—(1.14). This requires studying the CKM

matrix which relates “up” to “down” eigenstates, as

we shall see.

3 The CKM matrix

In this section we restore the arrow subscripts

↑, ↓. On account of (2.16) and (2.21), the matrix

W defined in (2.4) is given by

W
†
↑,↓ =P †

↑,↓V
†
↑,↓Ω

†
↑,↓. (3.1)

If we define

U = W
†
↑W↓ =P †

↑U0P↓ , (3.2)

where

U0 = V †
↑ Ω

†
↑Ω↓V↓ =







(

e
1

2
iτyB↑e−

1

2
iτzA↑

)

0

0

0 0 1






×







1 0 0

0

0
ei(Φ↑−Φ↓)τy













(

e
1

2
iτzA↓e−

1

2
iτyB↓

)

0

0

0 0 1






,

(3.3)

then U transforms eigenstates of M↓ into eigenstates

of M↑, provided that the phases of the eigenstates are

suitably chosen. To obtain the CKM matrix UCKM,

which relates eigenstates whose phases follow a stan-

dard convention, we shall need an additional trans-

formation

UCKM =Q†
↑UQ↓ , (3.4)

where Q↑,↓ are diagonal unitary matrices to be chosen

presently.

In evaluating (3.3) it is convenient to introduce

new symbols:

δ=∆↑∆
∗
↓ = e

1

2
i(A↑−A↓), (3.5)

Γ = cos
1

2
B↑, γ= cos

1

2
B↓, (3.6)
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Σ= sin
1

2
B↑, σ= sin

1

2
B↓, (3.7)

S = sin(Φ↑−Φ↓) and C = cos(Φ↑−Φ↓). (3.8)

We note that the first equation in (3.8) is the same

in (1.11). By using (3.5)—(3.8), we find U0 of (3.3)

can be written as

U0 =







δ∗Γγ+CδΣσ −δ∗Γσ+CδΣγ S∆↑Σ

−δ∗Σγ+CδΓσ δ∗Σσ+CδΓγ S∆↑Γ

−S∆∗
↓σ −S∆∗

↓γ C






.

(3.9)

The next step is to prepare for a perturbative

treatment of (3.2) by writing

P↑,↓
∼= I+p↑,↓ , (3.10)

where (in arrowless notation)

p† =
1

mh















0 0 −∆∗Lcos
1

2
B

0 0 ∆∗Lsin
1

2
B

∆L∗ cos
1

2
B −∆L∗ sin

1

2
B 0















.

(3.11)

We note that by putting (3.11) into (3.10), we can

satisfy (2.21) to first order in L.

Thus we have

U ∼=U0 +U ′ , (3.12)

where

U ′ = p†↑U0 +U0p↓. (3.13)

Let us carefully evaluate the lower left element of

p†↑U0 :

(p†↑U0)31 =
1

mt

(L∗
↑∆↑ cos 1

2
B↑)(δ

∗Γγ+CδΣσ)+

1

mt

(

−L∗
↑∆↑ sin

1

2
B↑

)

(−δ∗Σγ+CδΓσ) =

L∗
↑∆↑

mt

[

Γ (δ∗Γγ+CδΣσ)+

Σ(δ∗Σγ−CδΓσ)
]

=

L∗
↑∆↑

mt

δ∗(Γ 2 +Σ2)γ=
L∗

↑

mt

∆↓γ.

(3.14)

(Note how the calculation converts ∆↑ to ∆↓ and Γ

to γ.) The corresponding element of U0p↓ is trivial:

(U0p↓)31 =C

(

1

mb

∆∗
↓L↓ cos

1

2
B↓

)∗

=− L∗
↓

mb

∆↓γC.

(3.15)

Anticipating that B↑ will turn out fairly small,

∼ 0.2, we now observe that the matrix element U23

is going to be dominated by (U0)23 = S∆↑Γ ∼ S∆↑.

Therefore, S must have magnitude ∼ .04. It follows

that C ∼ 1− 1

2
S2 can be replaced by 1, and that all

elements of U ′ other than (U ′)13,23,31,32 being of order

S •

√
mdms

mb

, can be neglected.

Thus, by repeating for (U ′)13,23,32 the calculations

leading to (3.14) and (3.15), we have

U ′ ∼=





















0 0 +

(

L↓

mb

− L↑

mt

)

∆↑Γ

0 0 −
(

L↓

mb

− L↑

mt

)

∆↑Σ

−
(

L∗
↓

mb

− L∗
↑

mt

)

∆↓γ +

(

L∗
↓

mb

− L∗
↑

mt

)

∆↓σ 0





















. (3.16)

But from (2.8), taking T,β , cosΦ, sinΦ positive, we

find

L↓

|L↓|
=

L↑

|L↑|
=

1−eiχ

|1−eiχ| (3.17)

and so

L↓

mb

− L↑

mt

=
1−eiχ

|1−eiχ|L (3.18)

by (2.23). We now anticipate that χ will have to be

negative in order to make everything come out right.

Hence,

1−eiχ

|1−eiχ| =

e
1

2
iχ

(

−2isin
1

2
χ

)

|2sin
1

2
χ|

= +ie
1

2
iχ (3.19)

and (3.16) leads to

U ′ '











0 0 +ie
1

2
iχL∆∗

↓Γ

0 0 −ie
1

2
iχL∆∗

↓Σ

+ie−
1

2
iχL∆↓γ −ie−

1

2
iχL∆↓σ 0











.

(3.20)

For reasons shortly to be evident, let us now intro-

duce the phase factors

ε↑,↓ =−ie
1

2
iχ(∆∗

↑,↓)
2 = e−

iσ

2 ei( 1

2
χ−A↑,↓). (3.21)

Then we have

U ′ =











0 0 −ε↑L∆↑Γ

0 0 +ε↑L∆↑Σ

+ε∗↓L∆∗
↓γ −ε∗↓L∆∗

↓σ 0











. (3.22)
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In treating (3.9), let us note that since Φ↑ − Φ↓ ≈
sin−1S is small, A↑−A↓ is also small by (2.10). Hence

|Imδ| is small (see(3.5)) and 1−Reδ is second order.

So Reδ can be taken = 1, and the imaginary parts of

(U0)11,12,21,22 can be adjusted by small adjustments in

Q↑,Q↓. We shall treat such adjustments imprecisely

and simply neglect these imaginary parts. By taking

C→ 1 and using (3.6)—(3.7), we find




(U0)11 (U0)12

(U0)21 (U0)22



=





Γγ+Σσ −Γσ+Σγ

−Σγ+Γσ Σσ+Γγ



 =







cos
1

2
(B↓−B↑) −sin

1

2
(B↓−B↑)

sin
1

2
(B↓−B↑) cos

1

2
(B↓−B↑)






. (3.23)

Now B↓−B↑ must be positive to fit U13 and U31, and

so U12 is negative, whereas the standard presentation

gives (UCKM)12 positive. Therefore, we shall use the

Q-transformation to change the sign of the first row

and column, and also to remove the factors ∆↑, ∆
∗
↓

now appearing in the third row and column. Thus

Q†
↑ =







−1 0 0

0 1 0

0 0 ∆↓






, Q†

↓ =







+1 0 0

0 1 0

0 0 ∆∗
↑






(3.24)

and

UCKM =Q†
↑U0Q↓+Q†

↑U
′Q↓ =













cos
1

2
(B↓−B↑) sin

1

2
(B↓−B↑) −SΣ+ε↑LΓ

−sin
1

2
(B↓−B↑) cos

1

2
(B↓−B↑) SΓ +ε↑LΣ

Sσ−ε∗↓Lγ −Sγ−ε∗↓Lσ 1













,

(3.25)

where we have again allowed a slight imprecision of

phase in the (3,3) element.

Comparing (3.25) with the array

UCKM =







(u|d) (u|s) (u|b)
(c|d) (c|s) (c|b)
(t|d) (t|s) (t|b)






, (3.26)

we obtain the second half of (1.11) and (1.12)—(1.14).

Note: there is an ambiguity, Φ↑,↓ > or <
π

4
. We

take both Φ’s>
π

4
, so that |A| > |χ−A| and hence

|A| > |1
2
χ|. Since χ and A are negative,

1

2
χ−A> 0

and hence Reε↑,↓ > 0, as required in (u|b) and (t|d).
Because Imε↑ =−cos

(

1

2
χ−A

)

, we can then derive

(1.13) by using (2.15).

4 The “Timeon” model

The merit of the “strong γ4 T -violation model”

examined in this paper suggests that there may be

large T -violation somewhere in physics although its

manifestation in the quark mass sector is small. In

the “strong γ4 T -violation model” the T -violating ef-

fects are produced by the phase χ which enters non-

linearly into the Hamiltonian. This non-linear inter-

action makes it difficult to construct a renormali-

zable quantum field theory that can be extended

beyond the mass matrix. For this and other rea-

sons, we have considered a different model[3] in which

the T -violating effect enters linearly; therefore, the

model can lead to a renormalizable field theory, called

“timeon”.

In the timeon theory, the mass-generating Hamil-

tonian can be written by replacing M↑/↓ in (1.4) by

G↑/↓+iγ5F↑/↓, (4.1)

where G↑/↓ and F↑/↓ are real symmetric matrices, and

the F↑/↓ term in iγ5 arises from coupling to the vac-

uum expectation value of a new T -negative and P -

negative field τ(x), the timeon field. Thus, the whole

field theory conserves T , but T -violation arises from

the spontaneous symmetry breaking that makes the

vacuum expectation value

τ0 = 〈τ(x)〉vac 6= 0. (4.2)

The timeon field τ(x) is real, so that there is no

Goldstone boson[4]. However, the oscillation of τ(x)

around its vacuum expectation value τ0 gives rise to

a new particle, called “timeon”, whose production

can lead to large T -violating effects. In Ref. [3], it

is shown that the parameters determining G↑/↓ and

F↑/↓ can be adjusted to simulate an arbitrary complex

γ4 model, as far as the quark masses are concerned,

but not the CKM matrix. Thus, for example, in the

timeon γ5-model the light quark masses in the small

mass limit turn out to be proportional to J , whereas

in the γ4-model, they are proportional to J 2.
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