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Applying Bayesian neural networks to identify

pion, kaon and proton in BES/// *
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Abstract The Monte-Carlo samples of pion, kaon and proton generated from 0.3 GeV/c to 1.2 GeV/c by

the ‘tester’ generator from SIMBES which are used to simulate the detector of BES/ are identified with

the Bayesian neural networks (BNN). The pion identification and misidentification efficiencies are obviously

better at high momentum region using BNN than the methods of χ2 analysis of dE/dX and TOF information.

The kaon identification and misidentification efficiencies are obviously better from 0.3 GeV/c to 1.2 GeV/c

using BNN than the methods of χ2 analysis. The proton identification and misidentification efficiencies using

BNN are basically consistent with the ones of χ2 analysis. The anti-proton identification and misidentification

efficiencies are better below 0.6 GeV/c using BNN than the methods of χ2 analysis.
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1 Introduction

Pion (π), kaon (K) and proton (p) are three of

the six kinds of particles that can be directly de-

tected by BES/ (the second generation of Beijing

Spectrometer)[1], so it is important to identify π, K

and p for the data analysis of BES/ experiment. π,

K and p in BES/ experiment are generally identified

with the χ2 analysis of dE/dX and TOF information

and the methods derived from it, and the identifica-

tion capability of those methods is dependent on the

momentum of the particle. π, K and p can be iden-

tified well below 0.7 GeV/c, but the π, K identifi-

cation and misidentification efficiencies are obviously

bad above 0.8 GeV/c. And the behavior of the anti-

proton (p̄) in the BES/ detectors is different from

the one of p, so they will be identified separately. The

Bayesian neural networks (BNN)[2] is an algorithm of

the neural networks trained by Bayesian statistics. It

is not only a non-linear function as neural networks,

but also controls model complexity. So its flexibility

makes it possible to discover more general relation-

ships in data than the traditional statistical methods

and its preferring simple models make it possible to

solve the over-fitting problem better than the gen-

eral neural networks[3]. In this paper, BNN will be

applied to identify π, K, p and p̄, respectively. And

the efficiency of particle identification is compared us-

ing BNN and the χ2 analysis of dE/dX and TOF

information according to their weight from different

momentum[4].

2 The classification with Bayesian
neural networks[2,5]

The idea of Bayesian neural networks is to re-

gard the process of training a neural network as a

Bayesian inference. Bayes’ theorem is used to assign

a posterior density to each point, θ̄, in the parameter

space of the neural networks. Each point θ̄ denotes a

neural network. In the method of the Bayesian neu-

ral network, one performs a weighted average over

all points in the parameter space of the neural net-

work, that is, all neural networks. The methods make

use of training data {(x1, t1), (x2, t2), · · · , (xn, tn)},

where ti is the known label associated with data xi.

ti=0,1, · · · ,N−1, if there are N classes in the problems

of classification; xi has P components if there are P

factors on which the classification is influenced. That

is the set of data x = (x1, x2, · · · , xn) which corre-
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sponds to the set of target t = (t1, t2, · · · , tn). The

posterior density assigned to the point θ̄, that is, to

a neural network, is given by Bayes’ theorem

p(θ̄ |x,t) =
p(x,t | θ̄)p(θ̄)

p(x,t)
=

p(t |x, θ̄)p(x | θ̄)p(θ̄)

p(t |x)p(x)
=

p(t |x, θ̄)p(θ̄)

p(t |x)
, (1)

where data x do not depend on θ̄, so p(x | θ) = p(x).

We need the likelihood p(t |x, θ̄) and the prior density

p(θ̄), in order to assign the posterior density p(θ̄ |x,t)

to a neural network defined by the point θ̄. p(t | x)

is called evidence and plays the role of a normalizing

constant, so we ignore the evidence. That is,

Posterior∝Likelihood×Prior . (2)

We consider a class of neural networks defined by

the function

ym(x, θ̄) =
exp[sm(x, θ̄)]

∑N−1

k=0
exp[sk(x, θ̄)]

,

m = 0, 1, · · · , N −1 , (3)

where

sk(x, θ̄) = bk +

H
∑

j=1

vjk tanh

(

aj +

P
∑

i=1

uijxi

)

,

k = 0, 1, · · · , N−1 . (4)

The neural networks have P inputs, a single hidden

layer of H hidden nodes and m outputs. In the par-

ticular Bayesian neural networks described here, each

neural network has the same structure. The param-

eter uij and vjk are called the weights and aj and

bk are called the biases. Both sets of parameters are

generally referred to collectively as the weights of the

Bayesian neural networks, θ̄. ym(x, θ̄) is the probabil-

ity that the event, (x,t), belongs to the mth’s class.

So the likelihood of n training events is

p(t |x, θ̄) = yt1yt2 · · ·ytn
=

n
∏

i=1

yti
, (5)

where it has been assumed that the events are inde-

pendent with each other.

We get the likelihood, meanwhile we need the

prior to compute the posterior density. But the choice

of prior is not obvious. However, experience suggests

a reasonable class is the priors of Gaussian class cen-

tered at zero, which prefers smaller rather than larger

weights, because smaller weights yield smoother fits

to data. In the paper, a Gaussian prior is specified

for each weight using the Bayesian neural networks

package of Radford Neal1). However, the variance for

weights belonging to a given group (either input-to-

hidden weights (uij), hidden-biases (aj), hidden-to-

output weights (vjk) or output-biases (bk)) is chosen

to be the same: σ2
u, σ2

a, σ2
v , σ2

b , respectively. How-

ever, since we don’t know, a priori, what these vari-

ances should be, their values are allowed to vary over

a large range, while favoring small variances. This is

done by assigning each variance a gamma prior

p(z) =

(

α

µ

)α
zα−1e−z α

µ

Γ (α)
, (6)

where z = σ−2, and with the mean µ and shape pa-

rameter α set to some fixed plausible values. The

gamma prior is referred to as a hyperprior and the

parameter of the hyperprior is called a hyperparam-

eter.

Then, the posterior density, p(θ̄ | x,t), is gotten

according to Eqs. (2), (5) and the prior of Gaussian

distribution. Given an event with data x′, an esti-

mate of the probability that it belongs to the class is

given by the weighted average

ȳm(x′|x,t) =

∫
ym(x′, θ̄)p(θ̄ |x,t)dθ̄ . (7)

Currently, the only way to perform the high di-

mensional integral in Eq. (7) is to sample the den-

sity p(θ̄ | x,t) with the Markov Chain Marlo Carlo

(MCMC) method[2, 6—8]. In the MCMC method, one

steps through the θ̄ parameter space in such a way

that points are visited with a probability propor-

tional to the posterior density, p(θ̄|x,t). Points where

p(θ̄ |x,t) is large will be visited more often than points

where p(θ̄ |x,t) is small. Eq. (7) approximates the in-

tegral using the average

ȳm(x′ |x,t)≈
1

L

L
∑

i=1

ym(x′, θ̄i) , (8)

where L is the number of points θ̄ sampled from

p(θ̄|x,t). Each point θ̄ corresponds to a different neu-

ral network with the same structure. So the average

is an average over neural networks, and the proba-

bility of the data x′ belongs to the mth’s class. The

average is closer to the real value of ȳm(x′ |x,t), when

L is sufficiently large.

3 Particle identification(PID)

The training data and test samples of π, K, p

and p̄ from 0.3 GeV/c to 1.2 GeV/c are generated by

the ‘tester’ generator from a GEANT3-based Monte

Carlo (MC) simulation program (SIMBES) with de-

tailed consideration of the detector performance. The

consistency between data and Monte Carlo has been

1) R. M. Neal, Software for Flexible Bayesian Modeling and Markov Chain Sampling, http://www.cs.utoronto.ca/∼radford/
fbm.software.html
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checked in many high purity physics channels, and

the agreement is reasonable[9]. The requirement of

their polar angles is |cosθ|< 0.8. The MC samples of

π, K, p, p̄ are identified using BNN per 100 MeV/c

respectively. 6000 events are uniformly generated per

100 MeV/c for π, K, p, p̄, respectively. And 5000

events of them are for the training and 1000 events

of them are for the test, respectively.

Ten variables on MDC (Main Drift Chamber),

TOF (Time of Flight Counter) and BSC (Barrel

Shower Counter) informations in BES/
[1] are con-

sidered in the particle identification of π, K, p with

BNN , and they are as follows:

1) The first variable: the most probable pulse

height of dE/dX information from MDC, PHMP;

2) The second to fourth variable: the square value

of the deviation between the energy loss of the particle

for the ionization and its expectation if the particle

is π, K, p, respectively, (XSPI)2, (XSK)2, (XSP)2;

3) The fifth variable: the time of flight of the par-

ticle from TOF, T ;

4) The sixth to eighth variable: The weight for π,

K, p from TOF, respectively, WTPi, WTK,WTP;

5) The ninth variable: the most probable pulse

height of TOF, Q;

6) Then tenth variable: the ratio of the de-

posited energy in BSC and the momentum from

MDC, EBSC/P .

The ten variables are also used as inputs to BNN

in the particle identification of π, K, p̄.

3.1 PID with BNN

All ten variables are used as inputs to all neu-

ral networks, which have the same structure. In the

paper, all the networks have the input layer of ten

inputs, the single hidden layer of twelve nodes and

the output layer of three outputs which are the prob-

abilities of π, K, and p. And which probability is the

largest one, then the particle is thought as it. The

particle identification is performed per 100 MeV/c

with BNN. A Markov chain of neural networks is gen-

erated using the Bayesian neural networks package of

Radford Neal, with a training sample consisting of

5000 events each of π, K, p, in each process of the

particle identification. One thousand iterations, of

twenty MCMC steps each, are used. The neural net-

work parameters are stored after each iteration, since

the correlation between adjacent steps is very high.

That is, the points in neural network parameter space

are saved to lessen the correlation after twenty steps

here. It is also necessary to discard the initial part of

the Markov chain because the correlation between the

initial point of the chain and the points of the part

is very high. The initial three hundred iterations are

discarded here. 1000 events each of π, K, p are used to

test the identification capability of the trained BNN

per 100 MeV/c from 0.3 GeV/c to 1.2 GeV/c. The

particle identification of π, K, p̄ is performed in the

same way as the identification of π, K, p.

3.2 PID with the χ2 analysis of dE/dX and

TOF information

In this paper, the results of the particle identifica-

tion of π, K, p using the χ2 analysis are from the work

done by Qin Hu, et al.[4]. The particle identification

of Ref. [4] is performed in the way that the χ2 anal-

ysis of dE/dX and TOF are added with different,

not equal, weight according to different momentum

region. The results of the method are better than the

ones of equal weight, especially the identification of

π and K at high momentum region.

4 Results and discussion

The results of the particle identification of π, K,

p and p̄ with BNN and the works done by Qin Hu,

et al.[4] are shown in Fig. 1, Fig. 2, Fig. 3, Fig. 4,

Fig. 5, Fig. 6, respectively. Fig. 1 shows that above

0.8 GeV/c the π identification efficiency is obviously

higher while the π misidentification efficiency is obvi-

ously lower using BNN than the method in Ref. [4].

But the π identification and misidentification efficien-

cies are basically invariant below 0.8 GeV/c using

BNN and the method in Ref. [4]. Fig. 2 shows the

K identification and misidentification efficiencies are

obviously better from 0.3 GeV/c to 1.2 GeV/c us-

ing BNN than the method in Ref. [4]. Fig. 3 and

Fig. 4 show the p identification and misidentifica-

tion efficiencies are basically invariant using BNN and

the method in Ref. [4]. Fig. 5 and Fig. 6 show the

p̄ identification and misidentification efficiencies are

better below 0.6 GeV/c using BNN than the method

in Ref. [4]. In a word, BNN can be well applied to

identify π, K, p and p̄ in the BES/ experiment, es-

pecially to distinguish π from K and identify p̄, BNN

is more advantageous than the method of χ2 analysis

and the algorithms derived from it.

Fig. 1. The π identification and misidentifica-
tion efficiencies using BNN and the method of
Ref. [4], respectively.
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Fig. 2. The K identification and misidentifica-
tion efficiencies using BNN and the method of
Ref. [4], respectively.

Fig. 3. The p identification and misidentifica-
tion efficiencies using BNN and the method of
Ref. [4], respectively.

Fig. 4. The p identification and misidentifica-
tion efficiencies using BNN and the method of
Ref. [4], respectively.

Fig. 5. The p̄ identification and misidentifica-
tion efficiencies using BNN and the method of
Ref. [4], respectively.

Fig. 6. The p̄ identification and misidentifica-
tion efficiencies using BNN and the method of
Ref. [4], respectively.

Separating π, K and identifying p̄ better than χ2

analysis and the algorithms derived from it, BNN

can be applied to the data analysis of the BES/

experiment and the better results of physics can be

achieved. Although the tests in this paper are only

for the BES/ experiment, it is expected that the

algorithm of BNN can also be applied to the data

analysis of the BES0 experiment (the third genera-

tion of Beijing Spectrometer) in the future and will

find wide application in the experiments of high en-

ergy physics.

We wish to express our gratitude to the BES Col-

laboration for their excellent work on the Monte Carlo

simulation.
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