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Teleportation via thermally entangled states

of a two-qubit Heisenberg XXZ chain *
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Abstract We investigate quantum teleportation as a tool to study the thermally entangled state of a two-

qubit Heisenberg XXZ chain. Our work is mainly to investigate the characteristics of a Heisenberg XXZ chain

and get some analytical results of the fully entangled fraction. We also consider the entanglement teleportation

via a two-qubit Heisenberg XXZ chain.
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1 Introduction

Quantum entanglement, first recognized by Ein-

stein, Podolsky, Rosen[1] and Schrödinger[2], is one of

the most astonishing features of quantum mechanics.

The quantum inseparability implies the existence of

a pure entangled state which produces non-classical

phenomena. Although entanglement has been recog-

nized as a remarkable feature of quantum mechanics,

it remains only incompletely understood. In recent

years, there has been an ongoing effort to character-

ize qualitatively and quantitatively the entanglement

properties and apply them to quantum communica-

tion and information. Many schemes are proposed for

the generation of two or more particle entanglement.

Entanglement in different quantum systems has

been investigated extensively. Recently, interest on

the topic of the entanglement in a thermal equilib-

rium state is growing, because the physical realizable

quantum mechanisms do not always occur at zero

temperature but often in a thermal equilibrium, e.g.

the initial state in NMR based quantum computing

is a thermal entanglement.

The quantum entanglement in solid systems such

as spin chains is an important emerging field[3—6].

Spin chains are natural candidates for the realiza-

tion of entanglement compared with other physical

systems. In spin chain systems, an unknown state,

which is placed on one site, can be transmitted to a

distant site with some fidelity by using the dynamics

of the spin system[7, 8].

In some recent papers, Lee and Kim considered

teleportation of an entangled two-body pure spin-1/2

state[9]. Yeo studied the entanglement teleportation

via thermal entangled states of a two-qubit Heisen-

berg XX chain[10—12]. Zhang investigated the ther-

mal entanglement of a two-qubit spin chain with DM

anisotropic interaction and entanglement teleporta-

tion via the model[13]. Zhang studied the partial tele-

portation of entanglement through natural thermal

entanglement in a two-qubitXXX model[14], got a fi-

delity better than 2/3 using arbitrary entangled pure

states and also investigated the correlation informa-

tion in the paper.

In this paper, we investigate Lee and Kim’s two-

qubit teleportation protocol using two independent

thermally entangled states of a two-qubit Heisenberg

XXZ chain. The structure of the paper is as follows.

In the second part we introduce the model in brief. In

the third and the fourth part, we discuss the thermal

pairwise entanglement, the full entangled fraction and

the teleportation respectively. The paper ends in the

fifth part with the conclusion.
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2 The system and its thermal equili-

brium state

The Hamiltonian H for a two-qubit Heisenberg

XXZ chain in an external magnetic field B along

the z axis is

H =
J

2
(σxσx+σyσy +∆σzσz)+

B

2
(σ0σz +σzσ0), (1)

where σ0 is the identity matrix and σi (i = x,y,z)

are the Pauli matrices. J is the real coupling con-

stant for the spin interaction. The chain is said to

be antiferromagnetic for J > 0 and ferromagnetic for

J < 0. The parameter ∆ quantifies the anisotropy

in the interaction. The eigenvalues and eigenvec-

tors of H are given by H |00〉 = (J∆/2 + B)|00〉,
H |ψ±〉= (±J−J∆/2)|ψ±〉, H |11〉= (J∆/2−B)|11〉.
ψ±=

1√
2
(|01〉±|10〉).

The state of a typical condensed-matter sys-

tem in thermal equilibrium (temperature T ) is ρ =

exp(−βH)/Z, where H is the Hamiltonian, Z =

tr(exp(−βH)) is the partition function, and β =

1/(kT ), where k is the Boltzmann’s constant. The

entanglement associated with the thermal state ρ is

referred to as thermal entanglement[15].

For the system (1) in equilibrium at temperature

T , the density operator is

ρ =
1

Z
(e−β( J∆

2
+B)|00〉〈00|+e−β(J−

J∆
2

)|ψ+〉〈ψ+|+

e−β(−J−J∆
2

)|ψ−〉〈ψ−|+e−β( J∆
2

−B)|11〉〈11|), (2)

where the partition function

Z =
∑

exp(−βEi) = 2exp(J∆β/2)cosh(βJ)+

2exp(−J∆β/2)cosh(βB),

the Boltzmann’s constant k ≡ 1 from hereon, and

β= 1/T .

3 Concurrence and fully entangled

fraction

To quantify the amount of entanglement associ-

ated with ρ, we consider the concurrence[16], which

is defined as C = max[0,2max(λi)−
∑

λi], where λi

are the square roots of the eigenvalues of the ma-

trix R = ρSρ∗S, in which ρ is the density matrix,

S = σy ⊗σy, and the asterisk stands for the complex

conjugate. After some straightforward algebra, we

obtain

C[ρ] =
2

Z
max(|e J∆β

2 sinh(Jβ)|−e−
J∆β

2 ,0). (3)

The concurrence C=0 indicates vanishing entan-

glement. The critical temperature Tc above which

the concurrence is zero is determined by the above

nonlinear equation. This result is in accord with the

conclusion in Wang’s work[17].


















sinh

(

J

T

)

= e
−J∆

T , J > 0

sinh

( |J |
T

)

= e
−|J|∆

T . J < 0

(4)

In the standard teleportation protocol P0, the max-

imal teleportation fidelity Φmax[Λ
ρ,P0 ] achievable is

given by[18, 19].

Φmax[Λ
ρ,P0 ] = (2F [ρ]+1)/3 , (5)

where the fully entangled fraction

F [ρ] = max
i=0,1,2,3

{〈ψi
Bell|ρ|ψi

Bell〉}. (6)

After some straightforward algebra, we obtain

F [ρ] =

max

{

1

Z
e

J(∆−2)
2T ,

1

Z
e

J(∆+2)
2T ,

1

Z
e

−J∆
2T cosh

(

B

T

)}

.

(7)

For antiferromagnetic case (J > 0) the concur-

rences are given by Eq. (3), and only for ∆ > −1

can the entanglement exist. To be more simple, we

consider the case J = 1. The concurrence is invari-

ant under the substitution B→−B. We restrict our

considerations to B>0, ∆>−1.

F =











e
∆+2
2T , ∆>M−1

e
−∆
2T cosh

(

B

T

)

, ∆<M−1
(8)

where M = ln(cosh(Bβ))/β. Eq. (8) reduces to the

following possibilities in the zero-temperature limit.

That is, for β→∞, the system is in its ground state in

this case. There exist three possibilities for∆>M−1.

F = 0, for B−∆> 1; F = 1, for B−∆> 1 and F = 1/2,

for B−∆= 1. There also exist three possibilities for

∆<M−1. F = 0, for∆+1>B, F = 1/4, for∆+1 =B;

F = 1/2, for ∆+1 < B. For the ferromagnetic case

(J < 0) the concurrence exists only if ∆< 1. One can

get the similar results for the case J < 0.

4 Teleportation via the thermal equi-

librium state

Teleportation of a quantum state using a mixed

entangled state has been theoretically studied re-

cently. In Ref. [11], the teleportation of an entangled

state through Werner states as noisy quantum chan-

nels is considered. Now we look at Lee and Kim’s

two-qubit teleportation protocol using two copies of
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the above two-qubit thermal state, ρAB ⊗ ρA′B′ , as

a resource. We consider as input two qubits in the

Werner state[20], and this is different compared with

Ref. [14].

ρw = {σ0σ0− [(2ϕ+1)/3](σxσx +σyσy +σzσz)},
(−1 6ϕ6 1) (9)

if ϕ=1, ρw = |ψ−〉〈ψ−| is a maximally entangled pure

state, if 0 < ϕ < 1, ρw is an entangled mixed state.

Lastly, if −1 6 ϕ6 0, ρw is a separable mixed state.

Since our concern is the entanglement teleportation,

we focus on 0 < ϕ 6 −1. The output state is then

given by[21]

ρout =
∑

i,j

pij(σiσj)ρw(σiσj), (10)

where σi (i = 0, x, y, z) signifies the unit matrix

I and three components of the Pauli spin matrix σ,

respectively, Pij = tr[Eiρ(T )]tr[Ejρ(T )],
∑

Pij = 1.

Here E0 = |ψ−〉〈ψ−|, E1 = |Φ−〉〈Φ−|, E2 = |Φ+〉〈Φ+|,

E3 = |ψ+〉〈ψ+|, and φ±=
1√
2
(|00〉±|11〉).

We first calculate the measure of entanglement for

the teleported state ρout to be

C[ρout] =

2max

(

(2ϕ+1)(−1+e2Jβ)2e2βB+J∆β−e2β(B+J)m1

6(m2)2
,0

)

,

(11)

m1 = (ϕ−1)(eJ(2+∆)β +cosh(β∆J)+

2e−β∆J sinh(2B))−2(ϕ+2)(cosh(β(B−J)+

cosh(β(B+J))+eJ(∆−2)ϕ,

m2 = e
β(4B−J∆+2J)

2 +e
β(4J+J∆+2B)

2 +

e
−J(∆−2)

2 +e
β(2B−∆J)

2 .

(12)

To characterize the quality of the teleported state

ρout, it is often quite useful to look at the fidelity

between ρw and ρout, defined by[22]

F = {tr[
√

(ρw)1/2ρout(ρw)1/2]}2 . (13)

We can obtain the result

F =
1

36

(

2

Z1

√

(ϕ−1)
[

(ϕ−1)M1−2(2+ϕ)M2 +2(ϕ+1)e−β(2B+2J−j∆)−2(2−ϕ)e−3β(B+J)
]

+

√
3

Z2

√

(ϕ+1)
[

3(ϕ+1)M3 +2(1−ϕ)M4 +(ϕ+2)M5 +2e−2Bβ(1−ϕe−β(4B−J∆+6J))
]

+

1

Z2

√

(ϕ−1)
[

(ϕ−1)M6−(2+ϕ)M7 +(ϕ−2)M8−(1+ϕ)e−2Bβ −M9

]

)2

(14)

where
Z1 = e

−β
2

J(2+∆) +e
−β
2

(4B−J∆+2J)e
−β
2

(2B−J∆) +e
−β
2

(2B+J∆+4J),

Z2 = e
−β
2

(6J+J∆+4B) +e
−β
2

(6J−J∆+8B) +e
−β
2

(4J−J∆+6B) +e
−β
2

(8J+J∆+6B),
(15)

M1 = e2B+J∆β +e−β(2J+J∆+4B) +e−β(2J+J∆+2B) +e−J(2+∆)β +e−β(4J−J∆+2B),

M2 = e−β(3B+J) +e−β(B+J) +e−β(B+3J),

M3 = e−2β(B−J) +e−2β(B+J),

M4 = e−β(3B−J+J∆) +e−β(B−J+J∆)+e−β(3B+J+J∆) +e−β(B+J+J∆),

M5 = 2e−2β(B+J∆) +e−2β(2B+J∆) +e−2βJ∆,

M6 = e−2β(B−J) +2e−β(3B−J+J∆) +2e−β(B+J+J∆)+2e−β(B−J+J∆) +e−2β(B+J),

M7 = e−2β(B+J∆) +e−2J∆β,

M8 = 2e−β(3B+J+J∆)−e−2(2B+J∆)β ,

M9 = 2e−β(3B−J+J∆)(1−ϕe−β(4B−J∆+6J)).

(16)
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In particular, in the infinite temperature limit, β→0,

when there is zero thermal entanglement in the chan-

nels, we have

F → 1

4
[(2−ϕ)+

√

3(1−ϕ)2], (17)

which increases as ϕ→0 in accordance with Ref. [10].

5 Conclusions

In conclusion, we have studied the thermal equi-

librium state of a two-qubit anisotropic Heisenberg

XXZ chain. We analytically computed the concur-

rence and the fully entangled fraction. Finally we

have given the mathematic expressions according to

the quantum entanglement in a Werner state tele-

ported via two separate, thermally entangled two-

qubit Heisenberg XXZ chains. The two-qubit tele-

portation together with one–qubit unitary operations

are sufficient to implement the universal gates for

quantum computation. It is also expected that our

work will be of some help in the process of realizing

quantum teleportation.
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