Studies on the exotic structure of ²³Al^{*}

FANG De-Qing(方德清)^{1;1)} GUO Wei(郭威)¹ MA Chun-Wang(马春旺)¹ WANG Kun(王鲲)¹

YAN Ting-Zhi(颜廷志)¹ MA Yu-Gang(马余刚)¹ CAI Xiang-Zhou(蔡翔舟)¹ SHEN Wen-Qing(沈文庆)¹

REN Zhong-Zhou(任中洲)² SUN Zhi-Yu(孙志宇)³ M. Hosoi⁴ T. Izumikawa⁵

R. Kanungo⁶ S. Nakajima⁴ T. Ohnishi⁷ T. Ohtsubo⁵ A. Ozawa⁸ T. Suda⁷

K. Sugawara⁴ T. Suzuki⁴ A. Takisawa⁵ K. Tanaka⁷ T. Yamaguchi⁴ I. Tanihata⁶

(Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China)
 2 (Department of Physics, Nanjing University, Nanjing 210008, China)

3 (Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China)

4 (Department of Physics, Saitama University, Saitama 338-8570, Japan)

5 (Department of Physics, Niigata University, Niigata 950-2181, Japan)

6 (TRIUMF, 4004 Wesbrook Mal, Vancouver, British Columbia, V6T 2A3, Canada)

7 (Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan)

8 (Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan)

Abstract The longitudinal momentum distribution $(P_{//})$ of fragments after one-proton removal from ²³Al and reaction cross sections $(\sigma_{\rm R})$ for ^{23,24}Al on carbon target at 74A MeV have been measured simultaneously. An enhancement in $\sigma_{\rm R}$ is observed for ²³Al compared with ²⁴Al. The full width at half maximum of the $P_{//}$ distribution for ²²Mg fragments has been determined to be 232±28 MeV/c. Analysis of $P_{//}$ using the Few-Body Glauber Model indicates a dominant d-wave configuration for the valence proton in the ground state of ²³Al. The exotic structure in ²³Al is discussed.

Key words proton-rich nuclei, reaction cross section, longitudinal momentum distribution

PACS 25.60.-t, 21.60.-n, 27.30.+t

1 Introduction

Since the observation of an remarkably large interaction cross section ($\sigma_{\rm I}$) for ¹¹Li^[1], it has been shown that there is exotic structure like neutron halo or skin in light neutron-rich nuclei. Measurements of $\sigma_{\rm R}$, $P_{//}$ of one or two nucleons removal reaction, quadrupole moment and Coulomb dissociation have been demonstrated to be very effective methods to identify and investigate the structure of halo nuclei. The neutron skin or halo nuclei ^{6,8}He, ¹¹Li, ¹¹Be, ¹⁹C etc.^[1-3], have been identified by these experimental methods. Due to Coulomb barriers, the identification of a proton halo is more difficult compared to a neutron halo. Discrepancies have been found for proton halo in ${}^{8}B^{[1, 4-6]}$.

Proton-rich nucleus ²³Al has a very small separation energy $(S_p = 0.125 \text{ MeV})^{[7]}$ and is a candidate of proton halo. An enhanced $\sigma_{\rm R}$ for ²³Al has been observed previously^[8]. A long tail in the proton density distribution has been extracted for ²³Al which indicates an exotic structure. While the spin and parity (J^{π}) for ²³Al has been deduced to be $5/2^+$ recently^[9]. This result favors the *d*-wave configuration for the

Received 8 July 2008

^{*} Supported by National Natural Science Foundation of China (NNSFC) (10775168, 10405032, 10535010, 10605306), Shanghai Development Foundation for Science and Technology (06QA14062, 06JC14082, 05XD14021), Major State Basic Research Development Program in China (2007CB815004) and Knowledge Innovation Project of Chinese Academy of Sciences (KJCX3.SYW.N2)

¹⁾ E-mail: dqfang@sinap.ac.cn

valence proton in ²³Al. In this paper we will report the simultaneously measurement of $\sigma_{\rm R}$ and $P_{//}$ for study on the exotic structure of ²³Al.

2 Experiment

The experiment was performed at RIPS in RIKEN. Secondary beams were generated by fragmentation reaction of 135 AMeV ²⁸Si beam on a ⁹Be target. At the first dispersive focus, a Al wedge-shape degrader was installed and a Parallel Plate Avalanche Counter (PPAC) was placed. An ion chamber was used to measure the energy loss (ΔE) at the second focus. A plastic was placed before a C reaction target to measure the time-of-flight (TOF) from the PPAC at F1. The particle identification before the reaction target was done by means of $B\rho$ - ΔE -TOF method. After the reaction target, a quadrupole triplet was used to transport and focus the beam onto F3. Another plastic gave a stop signal of the TOF from F2 to F3. Another ion chamber was used to measure ΔE . The total energy (E) was measured by a NaI(Tl) detector. The particles were identified by TOF- ΔE -E method.

Fig. 1. $P_{//}$ distribution of fragment ²²Mg after one-proton removal from ²³Al. The closed circles with error bars are the present data, the solid curve is a Gaussian fit to the data.

For one-proton removal reactions of ²³Al, $P_{//}$ of the fragments is determined from the TOF after the target. The obtained $P_{//}$ of the ²²Mg fragments from ²³Al breakup at 74 AMeV is shown in Fig. 1. A Gaussian function was used to fit the results. The full width at half maximum (FWHM) was determined to be 232 ± 28 MeV/c after unfolding the Gaussianshaped system resolution. The FWHM is consistent with the Goldhaber model's prediction within the error bar^[10].

Reaction cross section is determined using the transmission method, by events of projectile before and after the reaction target from target-in and target-out measurements. The $\sigma_{\rm R}$ of 23,24 Al at 74 AMeV were obtained to be 1609 ± 79 mb and 1527 ± 112 mb, respectively. The errors include the statistical and systematic uncertainties. We observed an enhanced $\sigma_{\rm R}$ for 23 Al in our data again as in the previous experiment^[8].

3 Discussion

To interpret the measured $\sigma_{\rm R}$ and $P_{//}$ data, we performed a Few-Body Glauber Model (FBGM) analysis^[11]. In this model, a core plus proton structure is assumed for the projectile. For the core, HO-type functions were used for the density distributions. The wavefunction of the valence neutron was calculated by solving the eigenvalue problem in a Woods-Saxon potential. The separation energy of the last proton is reproduced by adjusting the potential depth.

The spin and parity for the ground state of ²³Al is shown to be 5/2⁺. Assuming the ²²Mg+p structure, three different configurations are possible for $J^{\pi} =$ 5/2⁺ of ²³Al: 0⁺ \otimes 1d_{5/2}, 2⁺ \otimes 1d_{5/2} and 2⁺ \otimes 2s_{1/2}^[9].

The $P_{//}$ for the valence proton in the s or dwave are calculated by use of the FBGM. The width parameters in the HO density distribution of ²²Mg were adjusted to reproduce the $\sigma_{\rm I}$ data at around $1 \, A \text{GeV}^{[12]}$. The extracted effective root-mean-square matter radii $(R_{\rm rms})$ for ²²Mg is 2.89±0.09 fm. To see the one-proton separation energy $(S_{\rm p})$ dependence, the $P_{//}$ is calculated assuming an arbitrary $S_{\rm p}$ in calculation of the wavefunction for the valence proton in ²³Al and shown in Fig. 2. If we adopt a larger radii of $R_{\rm rms} = 3.6$ fm for 22 Mg to see the core size effect on $P_{//}$, we obtained solid and open squares of FWHM in Fig. 2. $S_{\rm p}$ for 22 Mg in the ground and excited $(J^{\pi} = 2^+, E_x = 1.25 \text{ MeV})$ states are taken as 0.125 MeV and 1.375 MeV ($E_x + 0.125 \text{ MeV}$). Those two values are marked by two arrows in Fig. 2. In this figure, we can see that the width for the s and d-wave are obviously separated. The width for the s-wave is much lower than the data, while that of the d-wave is close to the experimental FWHM. With the increase of S_p , the width of $P_{//}$ increases slowly. That means $P_{//}$ will become wider for ²²Mg in the excited state. The effect of the core size on $P_{//}$ is negligible for the s-wave but not for the d-wave configuration. The larger sized core will give a wider $P_{//}$ distribution. From comparison of the FBGM calculation with the data in Fig. 2, it clearly indicates that the valence proton in ²³Al is dominantly in the dwave configuration. This is consistent with the shell model calculations and also the Coulomb dissociation measurement^[9, 13].

Fig. 2. The dependence of FWHM for $P_{//}$ after one-proton removal of ²³Al on the separation energy of the valence proton. The solid circles with error bars is the present data, the shaded area refers to its error. The solid and open squares are the FBGM calculations for the *d* and *s*-wave of the valence proton with the core $R_{\rm TMS} = 3.6$ fm. The solid and open triangles are for the core $R_{\rm TMS} = 2.89$ fm. The lines are just for guiding the eyes. The two arrows refer to the separation energy of 0.125 MeV and 1.37 MeV.

For the calculation of $\sigma_{\rm R}$ using the FBGM, $R_{\rm TMS} = 2.89 \pm 0.09$ fm is used for ²²Mg and the valence proton is assumed to be in *d*-wave as discussed above. But the calculated $\sigma_{\rm R}$ for ²³Al is much lower than the obtained $\sigma_{\rm R}$ data. Similar puzzle is also encountered for some neutron-rich nuclei ¹⁹C and ²³O. One way is to enlarge the core size to reproduce the $\sigma_{\rm R}$ data^[14]. Here we changed the core size of ²²Mg. The dependence of $\sigma_{\rm R}$ on $R_{\rm TMS}$ of the core is shown in Fig. 3. In the FBGM calculations, The range parameter (β) is calculated by the formula which is determined by fitting the σ_{R} of ¹²C + ¹²C from low to high energies^[15]. β is 0 and 0.35 fm for 1 AGeV and 74 AMeV, respectively. The $\sigma_{\rm R}$ of ²³Al is very sensitive to the size of ²²Mg core. To reproduce the measured $\sigma_{\rm R}$ of ²³Al, the calculated results indicates an enlarged ²²Mg core with $R_{\rm rms} = 3.37 \pm 0.18$ fm. It is $17 \pm 7\%$ larger than the size of the bare ²²Mg nucleus.

Fig. 3. The dependence of $\sigma_{\rm R}$ at 74 AMeV on the core size ($R_{\rm rms}$). The horizontal line is the experimental $\sigma_{\rm R}$ value, the shadowed area is the error of $\sigma_{\rm R}$. The solid circles and triangles denote the FBGM calculations with the range parameter $\beta = 0.35$ fm and $\beta = 0.80$ fm, respectively. The size of ²²Mg obtained by fitting the $\sigma_{\rm I}$ data at around 1 AGeV is marked by an arrow.

But there may be another possibility due to the Glauber model's underestimation of $\sigma_{\rm R}$ at intermediate energies^[16]. The $\sigma_{\rm B}$ of ²⁴Al is calculated with the size of 23 Mg core determined by fitting σ_{I} at around 1 $A \text{GeV}^{[12]}$. But the calculated σ_{R} for ²⁴Al is only $1430~\mathrm{mb}$ and it is 10% lower than the data. Since scope of the discrepancies in the Glauber model is large, underestimation may still exist for $\beta = 0.35~{\rm fm}$ at 74 AMeV. To correct the possible underestimation, we adjusted β to fit the $\sigma_{\rm R}$ of ²⁴Al from the present measurement. $\beta = 0.8$ fm is obtained when the $\sigma_{\rm R}$ of ²⁴Al is reproduced. Using this range parameter, the $\sigma_{\rm R}$ of ²³Al is calculated and shown in Fig. 3. The calculated results indicates the core size of $R_{\rm rms} = 3.13 \pm 0.18$ fm $(8 \pm 7\%$ larger than the size of ²²Mg deduced by the $\sigma_{\rm I}$ data). The obtained size of ²²Mg is different for the two range parameters, but both calculations suggest an enlarged core inside ²³Al.

4 Conclusion

In summary, the $P_{//}$ for ²³Al and $\sigma_{\rm R}$ for ^{23,24}Al were measured. An enhancement was observed for

 $\sigma_{\rm R}$ of ²³Al. The $P_{//}$ was found to be wide. We determined the valence proton to be a dominant *d*-wave

in the ground state of ²³Al. An enlarged core was revealed in order to explain both the $\sigma_{\rm R}$ and $P_{//}$ data.

References

- Tanihata I et al. Phys. Rev. Lett., 1985, 55: 2676; Tanihata I et al. Phys. Lett. B, 1992, 287: 307
- 2 Fukuda M et al. Phys. Lett. B, 1991, 268: 339
- Bazin D et al. Phys. Rev. Lett., 1995, 74: 3569; Nakamura T et al. Phys. Rev. Lett., 1999, 83: 1112; Ozawa A et al. Nucl. Phys. A, 2001, 691: 599
- 4 Minamisono T et al. Phys. Rev. Lett., 1992, 69: 2058;
 Schwab W et al. Z. Phys. A, 1995, 350: 283
- 5 Warner R E et al. Phys. Rev. C, 1995, 52: R1166; Negoita F, Borcea C, Carstoiu F. Phys. Rev. C, 1996, 54: 1787; Fukuda M et al. Nucl. Phys. A, 1999, 656: 209

- Obuti M M et al. Nucl. Phys. A, 1996, 609: 74
 Audi G, Wapstra A H. Nucl. Phys. A, 1993, 565: 66
- 8 CAI X Z et al. Phys. Rev. C, 2002, **65**: 024610
- 9 Ozawa A et al. Phys. Rev. C, 2006, 74: 021301R
- 10 Goldhaber A S. Phys. Lett. B, 1974, 53: 306
- Ogawa Y et al. Nucl. Phys. A, 1992, **543**: 722; Abu-Ibrahim B et al. Comput. Phys. Comm., 2003, **151**: 369
- 12 Suzuki T et al. Nucl. Phys. A, 1998, 630: 661
- 13 Gomi T et al. Nucl. Phys. A, 2005, 758: 761c
- 14 Kanungo R et al. Nucl. Phys. A, 2000, 677: 171; Kanungo R et al. Phys. Rev. Lett., 2002, 88: 142502
- 15 ZHENG T et al. Nucl. Phys. A, 2002, 709: 103
- 16 Ozawa A et al. Nucl. Phys. A, 1996, 608: 63