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Abstract We calculate the in-medium nucleon-nucleon scattering cross sections from the G-matrix using

the Dirac-Brueckner-Hartree-Fock (DBHF) approach. And we investigate the influence of the different repre-

sentations of the G-matrix to the cross sections, the difference of which is mainly from the different effective

masses.
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1 Introduction

The transport models, which are employed to de-

scribe the heavy ion collisions(HIC), are powerful ap-

proaches to reproduce the collective observable in

HIC and probe the equation of state(EOS) of nu-

clear matter
[1]

. Those models, such as the quantum

molecular dynamics (QMD) and Boltzmann-Uehling-

Uhlenbeck (BUU) equation as well as their relativis-

tic extensions (RBUU and RQMD), treat the nucleon

mean fields and nucleon-nucleon scattering cross sec-

tions as the basic input ingredients. Up to now, most

calculations of particle producing in nucleus-nucleus

reaction are using the free cross sections or the ap-

proximations σ∗

NN = 0.8σfree
NN , σ∗

NN/σfree
NN = (m∗/m)2

instead of the in-medium cross sections
[2—4]

.

Many recent papers have devoted to the in-

medium N-N scattering problem within differ-

ent methods, such as the collectivistic Brueckner

approach
[5]

, and DBHF approach
[6, 7]

. Here we apply

the DBHF approach which can successfully describe

the saturation mechanism of the nuclear matter
[8]

.

However, because of the uncertainty in determining

the nucleon self-energy in DBHF approach, Horowitz

and Serot
[9]

have developed a projection technique to

project the G-matrix elements onto five covariant am-

plitudes. This set of five covariant amplitudes is not

unique, which is corresponding to different represen-

tations. Adopting the two different representations

(pseudo-scalar(ps) and complete pseudo-vector(pv)

representations), we investigate the effects of these

two representations to the total and differential cross

sections in this paper.

2 Relativistic Brueckner approach

In the relativistic Brueckner approach, the essen-

tial point is using Dirac equation to describe the

single-particle motion in the nuclear matter,

[γµk̃∗µ−M̃∗]uλ(k) = 0 , (1)
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by introducing the reduced kinetic momentum k̃∗µ=

kµ +ReΣµ(k)

1+Σv(k)
and the reduced effective mass M̃∗ =

M +ReΣs(k)

1+Σv(k)
, the scalar Σs and vector (Σ0, Σv) are

the three components of the self-energy. The solution

of the in-medium Dirac equation is

uλ(k) =

√
Ẽ∗(k)+M̃∗

2M̃∗




1

2λ|k|
Ẽ∗(k)+M̃∗


χλ , (2)

where Ẽ(k) =
√

k2 +M̃∗2, χλ denotes a two-

component Pauli spinor with χ = ±1

2
. The normal-

ization of Dirac spinor is ûλ(k,kF)uλ(k,kF) = 1. The

basic quantity in DBHF approach is the G-matrix,

satisfying the Thompson equation which is most eas-

ily solved in the two-nucleon center of mass (c.m.)

frame
[6, 10]

,

G(p,q,P )|c.m. = V (p,q)+

∫
d3k

(2π)3
M̃∗2

Ẽ∗2(k)
×

Q(k,P )

2Ẽ∗(q)−2Ẽ∗(k)+iε
G(k,q,P ),(3)

where q, k, p are the relative momenta of the ini-

tial, intermediate and final states, respectively, P is

the total center of mass momentum. The starting en-

ergy in Eq. (3) is fixed to
√

s∗ = 2Ẽ∗(q). The Pauli

operator Q, preventing the nucleons scattering onto

occupied intermediate states, usually is replaced by

an angle-averaged Pauli operator Q for simplicity. In

order to get the the self-energy in rest frame from

the G-matrix in c.m. frame, we need to construct

the G-matrix in a covariant way using the ps and pv

representations. Thus starting from reasonable ini-

tial values for every part of self-energy, one obtains

the G-matrix by solving the in-medium Thompson

equation in momentum space, then leading to a new

set of values for self-energy which will be used in the

next iteration. This procedure is continued until the

convergence is achieved.

3 On-shell scattering cross sections

For on-shell nucleon nucleon interaction, there

are only five independent G-matrix elements, one

can directly calculate the cross sections from those

elements
[11]

(|p| = |q|). The differential cross section

is given as
[7]

,

dσ =
(M̃∗)4

s∗4π
2
|Ĝ(q,q,θ)|2dΩ (4)

and

|Ĝ(q,q,θ)|2 =

6∑

i=1

βi

[(∑

J

2J +1

4π

dJ
λiλ′

i

(θ)ReGJ
i (q,q)

)2

+

(∑

J

2J +1

4π

dJ
λiλ′

i

(θ)ImGJ
i (q,q)

)2]
. (5)

The weighting factors βi =2, i=1, · · · , 4, and β5 = β6 =

4 arise from the sum over all helicity states. Using the

orthogonality relation for the rotation matrices,∫
dcos(θ)dJ

λiλ
′

i

(θ)dJ′

λiλ′

i

(θ) =
2

2J +1
δJJ

′ . (6)

We can get the total cross section

σtot =

∫
dΩ

(M̃∗)4

s∗4π
2
|Ĝ(q,q,θ)|2 =

(M̃∗)4

s∗4π
2

6∑

i=1

βi×

∑

J

2J +1

4π

(
[ReGJ

i (q,q)]2 +[ImGj
i (q,q)]

2]
)

(7)

where GJ
i = 0.5(GJ,I=0

i +GJ,I=1
i ) and GJ

i = GJ,I=1
i are

the average neutron-proton and proton-proton(same

as neutron-neutron) on-shell G-matrix elements re-

spectively.

4 Numerical results and conclusions

In this section we present the numerical results

to investigate the influence of these two representa-

tions of the G-matrix to the cross sections. For the

bare nucleon-nucleon potential we adopt Bonn A po-

tential. First we calculate the G-matrix in the c.m.

frame of the two interacting nucleons, i.e., we use

Eq. (3) with P = 0. The relative momentum q is re-

lated to the kinetic energy of the incident nucleon in

the “laboratory system” Elab = 2q2/m, in which the

other nucleon is at rest. In the following we consider

the in-medium cross sections at three different Fermi

momenta kF =1.1, 1.39 and 1.75 fm−1, correspond-

ing to densities ρ =0.09, 0.18 and 0.36 fm−3 with the

nuclear saturation density ρ0 =0.18 fm−3.

In Fig. 1, the differential np cross sections at

different densities are shown at Elab =40, 90 and

250 MeV with the two representations of the G-

matrix for comparison. The vacuum results are also

presented. With the ps presentation, the np differen-

tial cross sections tend to decrease with the increasing
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of density at fixed laboratory energy and also decrease

with the increasing of laboratory energy at fixed den-

sity. With the pv presentation, the results are similar

except that at the density
1

2
ρ0 the lines are greatly

enhanced at low energies. We also present the pp dif-

ferential cross sections in Fig. 2, the results of which

are much more isotropic compared with Fig. 1. At

last, we give the results of the np and pp total cross

Fig. 1. In-medium np differential cross sections
obtained at various laboratory energies and
densities are functions of angles. The upper
three with ps representation and the lower
three with pv representation.

Fig. 2. The same as Fig. 1, but for in-medium
pp differential cross sections.

sections as functions of laboratory energies in Fig. 3

and Fig. 4. For np channel, the total cross sections

with ps representation decrease with the increasing

of density, while with pv representation there is a

bump at moderate energy and density
1

2
ρ0. But for

pp channel, the bump is not evident. For every fig-

ure, the cross sections with pv representation change

with density or laboratory energy more smoothly

than those with ps representation, which is mainly

due to the difference of effective masses with two

representations through the factor of M̃∗4/(4π
2s∗) in

Eq. (7). And in this paper, at different Fermi mo-

menta kF = 1.1, 1.39, 1.75 fm−1, we get M̃∗ =592.4,

479.2, 339.0 MeV with ps representation , while

M̃∗=766.6, 660.2, 527.6 MeV with pv representation.

Fig. 3. In-medium np total cross sections are
functions of laboratory energies, left one with
ps representation, right one with pv represen-
tation.

Fig. 4. In-medium pp total cross sections with
two representations, same as Fig. 3.
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