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Hadron-quark phase transition in neutron stars *
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Abstract We study the hadron-quark phase transition in the interior of neutron stars. The relativistic mean

field (RMF) theory is adopted to describe the hadronic matter phase, while the Nambu-Jona-Lasinio (NJL)

model is used for the quark matter phase. We investigate the influence of the hadronic equation of state on

the phase transition and neutron star properties. It is found that a neutron star possesses a large population

of hyperons, but it is not dense enough to possess a pure quark core. Whether or not the mixed phase of

hadronic and quark matter appears in the center of neutron stars depends on the RMF parameters used in the

calculation.
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1 Introduction

It is expected that nuclear matter might undergo

a deconfinement phase transition at very high den-

sity/temperature. Such phase transition has received

much attention in neutron star physics
[1—7]

. Hyper-

ons may appear around twice normal nuclear matter

density through the weak interaction
[8]

, which usu-

ally occur earlier than the hadron-quark phase tran-

sition. It has been pointed out by Glendenning
[9]

that the hadron-quark phase transition in neutron

stars may proceed through a mixed phase of hadronic

and quark matter over a finite range of pressures and

densities according to the Gibbs criteria for phase

equilibrium. Unfortunately, there is no single model

which can be used to describe both phases and the

dynamic process of the phase transition. In this

work, we adopt the relativistic mean field (RMF)

theory to describe the hadronic matter phase, while

the Nambu-Jona-Lasinio (NJL) model is used for the

quark matter phase, and then perform the Glenden-

ning construction for the charge-neutral mixed phase

where the hadronic and quark phases coexist. The

choice of the NJL model is motivated by the fact

that this model can successfully describe many as-

pects of quantum chromodynamics such as the non-

perturbative vacuum structure and dynamical break-

ing of chiral symmetry[10—12].

The RMF theory has been successfully and widely

used for the description of nuclear matter and finite

nuclei
[13—17]

. It has also been applied to predict the

equation of state (EOS) of dense matter for the use

in supernovae and neutron stars
[18, 19]

. In the RMF

approach, baryons interact through the exchange of

scalar and vector mesons. The meson-nucleon cou-

pling constants are generally determined by reproduc-

ing some nuclear matter properties or ground-state

properties of finite nuclei. In the present work, we

employ two successful parameter sets of the RMF

model, NL3
[20]

and TM1
[21]

. However, there are large

uncertainties in the meson-hyperon couplings due to

limited experimental data. We use the vector meson-

hyperon coupling constants derived from the quark

model, and the scalar meson-hyperon coupling con-
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stants constrained by reasonable hyperon potentials.

Two additional strange mesons, σ∗ and φ, were origi-

nally introduced in order to obtain the strong attrac-

tive hyperon-hyperon (YY) interaction deduced from

the earlier measurement
[22]

. A recent observation of

the double-Λ hypernucleus 6
ΛΛHe, called the Nagara

event
[23]

, suggests that the effective ΛΛ interaction

should be considerably weaker (4BΛΛ ∼ 1 MeV) than

that deduced from the earlier measurement (4BΛΛ ∼
5 MeV). For each parameter set of the nucleonic sec-

tor, we consider two cases of hyperon-hyperon inter-

actions, the weak and strong YY interactions. By

comparing the results with different parametrizations

in the RMF model, we evaluate how sensitive the

hadron-quark phase transition and neutron star prop-

erties are to the hadronic EOS used in the calculation.

2 Models

We adopt the relativistic mean field (RMF) theory

to describe the hadronic matter phase. The effective

Lagrangian is given by

LRMF =
∑

B

ψ̄B

[

iγµ ∂µ−mB−gσBσ−gσ∗Bσ
∗−

gωBγµω
µ−gφBγµφ

µ−gρBγµτiρ
µ
i

]

ψB +

1
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2
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σσ
2− 1

3
g2σ

3− 1

4
g3σ

4−

1

4
WµνW

µν +
1

2
m2

ωωµω
µ +

1

4
c3 (ωµω

µ)
2−

1

4
RiµνR

µν
i +

1

2
m2

ρρiµρ
µ
i +

1

2
∂µσ

∗ ∂µ
σ∗−

1

2
m2

σ∗σ∗2− 1

4
SµνS

µν +
1

2
m2

φφµφ
µ +

∑

l

ψ̄l [iγµ ∂µ−ml]ψl, (1)

where the sum on B runs over the baryon octet (p,

n, Λ, Σ+, Σ0, Σ−, Ξ0, Ξ−), and the sum on l is over

electrons and muons (e− and µ−). In the mean-field

approximation, the meson field equations in uniform

matter are written as

m2
σσ+g2σ

2+g3σ
3 =−

∑

B

gσB

π2

∫ kB
F

0

m∗

Bk
2

√

k2 +m∗2
B

dk, (2)

m2
ωω+c3ω

3 =
∑

B

gωB (kB
F )

3

3π2
, (3)

m2
ρρ=

∑

B

gρBτ3B (kB
F )

3

3π2
, (4)

m2
σ∗σ∗ =−

∑

B

gσ∗B

π2

∫ kB
F

0

m∗

B
√

k2 +m∗2
B

k2dk, (5)

m2
φφ=

∑

B

gφB (kB
F )

3

3π2
, (6)

where m∗

B =mB +gσBσ+gσ∗Bσ
∗ is the effective mass

of the baryon species B.

For neutron star matter consisting of a neutral

mixture of baryons and leptons, the β equilibrium

conditions without trapped neutrinos are given by

µp = µΣ+ =µn−µe, (7)

µΛ = µΣ0 =µΞ0 =µn, (8)

µΣ− = µΞ− =µn+µe, (9)

µµ = µe, (10)

and the charge neutrality condition is given by

np +nΣ+ =nΣ− +nΞ− +ne +nµ. (11)

We can solve the coupled equations self-consistently

at a given baryon density nB =np+nn+nΛ+nΣ++nΣ0+

nΣ− +nΞ0 +nΞ− , and then obtain the hadronic mat-

ter properties. In the present work, we employ NL3

and TM1 parameter sets, and take the naive quark

model values for the vector meson-hyperon coupling

constants,

1

3
gωN =

1

2
gωΛ =

1

2
gωΣ = gωΞ,

gρN =
1

2
gρΣ = gρΞ, gρΛ = 0,

2gφΛ = 2gφΣ = gφΞ =−2
√

2

3
gωN, gφN = 0. (12)

The scalar coupling constants are chosen to give rea-

sonable hyperon potentials U (N)
Y (n0) = gσYσ (n0) +

gωYω (n0), and we use U (N)
Λ = −28 MeV, U (N)

Σ =

+30 MeV, and U (N)
Ξ =−18 MeV

[24—26]
. The hyperon

couplings to strange meson σ∗ are restricted by the

relation U (Ξ)
Ξ 'U (Ξ)

Λ ' 2U (Λ)
Ξ ' 2U (Λ)

Λ
[27]

. We consider

the weak YY interactions U (Λ)
Λ '−5 MeV

[28—30]
and

strong YY interactions U (Λ)
Λ ' −20 MeV[22] for both

NL3 and TM1 cases.

We adopt a three-flavor version of the NJL model

to describe the deconfined quark phase. The La-
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grangian is given by

LNJL = q̄ (iγµ ∂µ−m0)q+Lsym +Ldet, (13)

Lsym = G

8
∑

a=0

[

(q̄λaq)
2
+(q̄iγ5λaq)

2
]

, (14)

Ldet = −K {det [q̄ (1+γ5)q]+det [q̄ (1−γ5)q]} ,
(15)

where Lsym and Ldet denote the four-point interaction

and six-point interaction, respectively. This model

has five parameters, namely, the current quark masses

m0
q and m0

s , the coupling constants K and G, and

the momentum cutoff Λ. In the present calcula-

tion, we employ the parameters given in Ref. [31],

m0
q = 5.5 MeV, m0

s = 140.7 MeV, Λ = 602.3 MeV,

GΛ2 = 1.835, and KΛ5 = 12.36. In the NJL model,

the quark gets constituent quark mass by sponta-

neous chiral symmetry breaking. The constituent

quark mass m∗

i satisfies the following gap equation

m∗

i =m0
i −4G〈q̄iqi〉+2K〈q̄jqj〉〈q̄kqk〉. (16)

The quark condensate Ci = 〈q̄iqi〉 is given by

Ci =− 3

π2

∫Λ

ki
F

m∗

i
√

k2 +m∗2
i

k2dk, (17)

where ki
F denotes the Fermi momentum of the quark

flavor i.

For the quark matter consisting of a neutral mix-

ture of quarks (u, d, and s) and leptons (e and µ)

in β equilibrium, the charge neutrality condition is

expressed as

2

3
nu−

1

3
(nd +ns)−ne−nµ = 0. (18)

The β equilibrium conditions are given by

µs = µd =µu+µe, (19)

µµ = µe. (20)

The coupled equations can be solved self-consistently

at a given baryon density nB = (nu +nd +ns)/3, and

then we can obtain the quark matter properties.

3 Hadron-quark phase transition and

neutron star properties

It has been discussed extensively in the literature

that a mixed phase of hadronic and quark matter

could exist over a finite range of pressures and densi-

ties according to the Gibbs criteria for phase equilib-

rium. In the mixed phase, the local charge neutrality

condition is replaced by a global one. This means

that both hadronic and quark matter are allowed to

be separately charged. The condition of global charge

neutrality is expressed as

χnQP
c +(1−χ)nHP

c = 0, (21)

where χ is the volume fraction occupied by quark

matter in the mixed phase, which increases from χ= 0

in the pure hadronic phase to χ= 1 in the pure quark

phase. nHP
c and nQP

c denote the charge densities of

hadronic phase and quark phase, respectively. The

Gibbs condition for phase equilibrium at zero tem-

perature is then given by

PHP (µn,µe) =PQP (µn,µe) =PMP. (22)

In Fig. 1 we plot the full EOS in the form P =

P (ε). The mixed phase part of the EOS is shaded

gray, where the pressure varies continuously. It is

shown that the onset and width of the mixed phase

depend on the RMF parameters used in the calcula-

tion. The NL3 model leads to earlier appearance of

the mixed phase than the TM1 model, and the weak

YY interaction favors earlier onset of the mixed phase

than the strong YY interaction. This is mainly be-

cause that a harder hadronic EOS prefers an earlier

hadron-quark phase transition.

Fig. 1. The full EOS of neutron star matter in
the form of pressure P versus energy density ε.
The shaded regions correspond to the mixed
phase (MP). The dashed and dot-dashed lines
show the pressures of hadronic phase (HP) and
quark phase (QP), respectively.

In Fig. 2, we present the mass-radius relation of

neutron stars by solving the Tolman-Oppenheimer-

Volkoff (TOV) equation with the EOS over a wide
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Fig. 2. The mass-radius relation for neutron stars.

density range. Since the pressure and density inside

neutron stars decrease from the center to the surface,

the most possible region where the deconfined quark

phase can exist is the center of the neutron star with

maximum mass. When the central density is larger

than the critical density of the appearance of quark

matter, the hadron-quark phase transition can occur

in the core of neutron stars. We find that the neu-

tron star can possess a mixed phase core, but it is

not dense enough to possess a pure quark core with

the NL3 model. On the other hand, the neutron star

is only composed of hadronic matter with the TM1

model. By comparing the results of different cases,

we can see the influence of the hadronic EOS on the

hadron-quark phase transition and neutron star prop-

erties.

4 Summary

We have studied the hadron-quark phase transi-

tion which may occur in the core of massive neutron

stars. With a definite EOS for the quark phase, we

examine the influence of the hadronic EOS on the de-

confinement phase transition and neutron star prop-

erties. In the present work, we have used NL3 and

TM1 parameter sets. For each parameter set of the

nucleonic sector, we consider two cases of hyperon-

hyperon interactions, the weak and strong YY in-

teractions. With the NL3 model, the mixed phase

can exist in the core of massive neutron stars, but

no pure quark phase can exist. For the TM1 model,

the neutron star is not dense enough to possess the

mixed phase, and therefore the hadron-quark phase

transition could not occur inside neutron stars in this

case. We conclude that whether the mixed phase of

hadronic and quark matter exist in the core of neu-

tron stars depends on the RMF parameters used in

the calculation.
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53: 410–429


