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Abstract High-spin isomeric states in proton-rich A ~ 190 nuclei have been investigated using configuration-

constrained calculations of potential-energy surfaces. The calculations reproduce reasonably the experimental

data, and predict shape coexistence of high-spin isomeric states in light Po isotopes.
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1 Introduction

Proton-rich A ~ 190 mass region is character-
istic of shape coexistence. In this mass region,
there exists rare coexistence of triple shapes: sphere,
oblate and prolatem. More interesting shape coex-
istence is predicted in light Po nuclei”. Here it is
shown in Ref.”! that small prolate (SP), large pro-
late (LP), small oblate (SO) and large oblate (LO)
shapes may coexist. Experiments observed high-
spin isomers having various shapes in proton-rich
A ~ 190 nuclei®. For example, in *5Pb, there ex-
ist a spheric 127 isomer, an oblate 11~ isomer and a
prolate 8~ isomer!”. However, there has been no ob-
servation of shape coexistence of high-spin isomeric
Theoretically, it is predicted that light Po
isotopes may show small oblate and large oblate co-

existence of 11~ isomeric states.

states.

In the present
work, we investigate such interesting phenomenon us-
ing configuration-constrained calculation of potential-

energy surface (PES)?.

2 The model

In the configuration-constrained PES calculation,
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single-particle levels are obtained by the nonaxial
Wood-Saxon potential[ﬁ]. Pairing is treated using
the Lipkin-Nogami method!” that can approximately
conserve the particle number. The monopole pair-
ing strength (G) is first determined by the aver-
age gap methodlg]7 and then adjusted through the
reproduce of experimental odd-even mass difference
(see Ref. [5] for the detail of the G adjustment).
The total energy consists of macroscopic and mi-
croscopic parts. The former is calculated by the
standard liquid drop model[gl7 and the latter is ob-
tained through the Strutinsky shell correction™”.
The configuration-constrained method allows the cal-
culation of PES for a specified configuration. This is
achieved by calculating and identifying the average
Nilsson quantum numbers for every orbital involved
in the conﬁgurationls]. The calculation can properly
treat the shape polarization due to unpaired nucleons.

In addition, the intrinsic quadrupole moment (Q,)
of a specified configuration is calculated by Q, =
Zle s +Zk#kj 2V2q, (where g, is the single-proton
quadrupole moment obtained from the Woods-Saxon
wave function and S is the number of the blocked or-

bitals with index k;). For axial deformation, a mea-
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sured spectroscopic quadrupole moment (Q,) is
transformed to Qo through the relation Qo = Q,[(21+
NI +1D)]/[BK2—I(I+1)].

3 Calculations and discussions

In Fig. 1, we display the calculated
117{m9/27[505] ® m13/2%[606]} isomeric states in
Pb and Po isotopes and their comparison with

. [3, 11]
experiments .

One can see that the calculated
excitation energies deviate considerably from the ex-
perimental data. This is because the proton Fermi
surfaces of the nuclei are at or near the Z = 82
shell closure, which prohibits the adjustment of G
due to the influence of shell gap on the odd-even
mass difference. It has been shown in Ref.” that the
adjustment of G is important for the reproduce of
multi-quasiparticle state excitation energy. However,
our calculations reproduce the variation trend of the
excitation energies along both Pb and Po isotopic
chains. The calculated quadrupole moment of 11~
isomer in '"*Pb is in good agreement with experi-
ment, while our calculation for '°*Pb is remarkably
underestimate the measured data. In Ref. [11], sev-
eral calculations can reproduce well the quadrupole
moment of the 11~ isomer in Pb, but all the calcu-
lations give results for '**Pb apparently smaller than
experimental data. It is so far not clear why the the-

ories can describe well one of two neighboring nuclei,

but cannot describe well the other. Our calculations
show coexistence of small oblate and large oblate 11~
isomeric states in light Po isotopes, which is consis-
tent with the results of Ref. [2]. However, Ref. [2]
gives almost constant and same excitation energies
for both the small oblate and large oblate 11~ iso-
meric states, while there are variation with neutron
numbers in our calculations (see Fig. 1). This can be
clearly seen in Fig. 2 where we show the calculated
PESs. Fig. 2 indicates that the 11~ isomeric states
are reasonably stable against y distortion.
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Fig. 1. Calculated excitation energies (up-

per panel) and intrinsic quadrupole moments
(lower panel) of the 117 isomeric states in Pb
and Po isotopes. The experimental data are
taken from Refs.[3, 11].

188. 190.

[Tk

B,sin(y+30°)
o
>

0.12

Y

0.08

196. ————i%
—= Pol ——= "Po

SN

)

0.00 0.04 0.00 0.04 0.00

0.04 0.00

0.04 0.00 0.04 0.00 0.04

X = B,cos(y+30°)

Fig. 2.

Calculated PESs of the 117 isomeric states in '%87!%¥Po. The circles (squares) represent the first

(second) minima. The energy interval between neighboring contours is 100 keV.

In '¥Po and '°°Po, we predict that large prolate
high-spin isomeric state coexists with small prolate
high-spin isomeric states (see Table 1), besides the
coexistence of small and large oblate 11~ isomeric

states. The large prolate 8 isomeric configuration

has been observed in N =106 isotones from '"™Er to
188pp2 - We list in Table 1 several proton-rich nu-
clei. The calculated excitation energies for these nu-
clei agree well with experiments. With the advance

of experimental techniques, the 8~ state may also be
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Table 1. Calculated K™ =8~ isomericl2states in N = 106 isotones and K™ = 6 isomeric states in N = 104
isotones compared with experiments
JT nucleus B2 v Ba Qo/(eb) E.a1./keV Eexpt. /keV
8Lp 184Pt106 0.231 0° -0.030 7.25 1847 1839
186 gy 06 0.250 20 -0.021 8.43 2271 2217
188Pb1og 0.264 0° -0.017 9.30 2401 2578
190Po g6 0.276 0° -0.010 10.74 2632
8gp 0.099 2° 0.013 3.52 2474
61 182Pty04 0.243 0° -0.016 7.90 1806
184 g1 04 0.252 2° -0.007 8.53 1980
186Pbyg4 0.271 0° -0.005 9.77 2074
188Poy g4 0.282 0° 0.003 11.07 2132
63p 0.097 4° 0.015 3.49 2538
e prolate 8~ state influences the isomeric property of
008 018 the large prolate 8~ state. In addition, we predict the
042 existence of 61 isomeric state in proton-rich N =104
0.04 . . .
isotones. In N = 104 isotones with less protons, the
2 000 008 isomer has been systematically observed'?. The cal-
E 0.04 0.08 0.12 0.20 0.24 0.28
2012 culated PESs for the coexisting shapes in ¥ Po and
" otef N\ 199Pg are presented in Fig. 3.
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Fig. 3. Calculated PESs for the K™ = 6T iso-

meric states in '®Po (upper panel) and the
K™ = 8 isomeric states in '°°Po (lower
panel). The left (right) PESs correspond to
small (large) prolate shapes.

observed in '°°Po that only have two more protons
than *Pb. It may be interesting that how the small

performed for the investigation of high-spin isomeric
states in proton-rich A ~ 190 nuclei. We predict shape
coexistence of high-spin isomeric states in light Po
isotopes. It is shown that small and large oblate 11~

188

isomeric states coexist in ®8719Po, and small and

large 8~ (67) isomeric states coexist in 1°Po (**¥Po).
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