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Excited nucleon electromagnetic form factors from

broken spin-flavor symmetry
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Abstract A group theoretical derivation of a relation between the N→∆ charge quadrupole transition and

neutron charge form factors is presented.
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1 Introduction

A milestone in the development of strong inter-

action theory was the proposition[1] that strong in-

teractions not only conserve isospin and strangeness

but are also approximately invariant under the

higher SU(3) flavor symmetry. The latter combines

baryon isospin multiplets with different isospin I and

strangeness S to larger degenerate multiplets of par-

ticles with the same spin J and parity P , e.g. to a

baryon octet with spin 1/2 and a baryon decuplet

with spin 3/2. Although broken, flavor symmetry

leads to a number of remarkable predictions such as

the Gell-Mann-Okubo relation for octet baryons and

the equal spacing rule for decuplet baryons, both of

which are well satisfied in nature.

A still higher symmetry is obtained when SU(3)F

flavor and SU(2)J spin symmetries are embedded into

the larger SU(6) spin-flavor group, in which case new

generators link the previously unconnected flavor and

spin symmetries[2—4]. The assumption of an underly-

ing spin-flavor symmetry of strong interactions has far

greater predictive power than individual flavor and

spin symmetries represented by the direct product

group SU(2)J×SU(3)F . For example, within SU(6)

it is not only possible to combine the spin 1/2 flavor

octet (2× 8 states) and spin 3/2 flavor decuplet (4×
10 states) into a 56 dimensional spin-flavor super-

multiplet, but also to connect observables of different

spin tensor rank such as charge radii (rank 0 ten-

sors) and quadrupole moments (rank 2 tensors) that

remain unrelated by the direct product group.

Numerous successes, for example µp/µn = −3/2

for the ratio of proton and neutron magnetic

moments[4], affirm that SU(6) is a useful symmetry

in baryon physics. We now understand that the un-

derlying field theory of strong interactions, quantum

chromodynamics (QCD), possesses a spin-flavor sym-

metry which is exact in the large Nc limit[5, 6], where

Nc denotes the number of colors, and that for finite

Nc spin-flavor symmetry breaking operators can be

classified according to the powers of 1/Nc associated

with them. As a result, one obtains a rigorous energy

scale independent perturbative expansion scheme for

QCD processes[7].

Previously, we abstracted from the quark model

with two-body exchange currents a relation between

the inelastic N → ∆ quadrupole and the elastic neu-

tron charge form factors[8]

GN→∆
C2 (Q2) = −3

√
2

Q2
Gn

C(Q2), (1)

which in the limit of zero photon momentum transfer

reduces to a relation between the N → ∆ transition

quadrupole moment and the neutron charge radius[9]

QN→∆ =
1√
2

r2
n . (2)

Here, N → ∆ stands for both p → ∆+ and n → ∆0

transitions. Comparison of these relations with ex-

periment shows good agreement from low to high mo-

mentum transfers[10].

It has been pointed out that the derivation of
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Eq. (1) relies only on the spin-flavor structure of the

wave functions and operators involved, i.e., only on

general algebraic properties of the quark model and

not on specific assumptions, such as values for quark

masses, coupling constants, etc. Therefore, it appears

that it should be derivable within the framework of an

abstract SU(6) tensor analysis, similar to the deriva-

tion of the Beg-Lee-Pais relation µp→∆+ = 2
√

2µp/3

between the p→∆+ transition and proton magnetic

moments. The purpose of this paper is to present a

group theoretical derivation of Eq. (2). The general-

ization to finite momentum transfers will be presented

elsewhere.

2 Spin-flavor symmetry analysis

We start from the observation that the N(939)

and ∆(1232) are members of the same 56 dimensional

SU(6) ground state multiplet of spin-flavor symme-

try. If the symmetry were exact, N and ∆ baryons

would have the same mass. Spin-dependent operators

in the Hamiltonian H break SU(6) symmetry and lift

the degeneracy between N and ∆ masses. Moreover,

they connect the symmetry breaking in the flavor

octet to the symmetry breaking in the flavor decu-

plet.

Similarly, in the SU(6) symmetry limit the charge

form factors Gn
C(Q2) and GN→∆

C2 (Q2) are exactly zero.

In the following we will see that spin-dependent terms

in the charge operator ρ break SU(6) symmetry and

lead to nonzero neutron and N → ∆ charge form

factors, which are related as in Eq. (1) because the

group algebra connects the breaking of the symmetry

in Gn
C(Q2) to the symmetry breaking in GN→∆

C2 (Q2).

A basic assumption in a group-theoretical analysis

is that quantum mechanical operators and states have

definite transformation properties, i.e., they trans-

form according to certain irreducible representations

(reps) of the underlying symmetry group. A general

matrix element M of an operator ΩR evaluated be-

tween baryon ground states reads

M= 〈56|ΩR |56〉, (3)

where R is the dimension of the irreducible rep asso-

ciated with the considered operator.

An allowed symmetry breaking operator ΩR act-

ing on the baryon ground state multiplet must trans-

form according to one of the irreducible reps R con-

tained in the direct product[3]

5̄6×56=1+35+405+2695. (4)

Here, the 1 dimensional rep on the right-hand side

corresponds to an SU(6) symmetric operator, while

the remaining reps characterize respectively, first, sec-

ond, and third order SU(6) symmetry breaking op-

erators. Operators transforming according to other

SU(6) reps not contained in this product will lead to

vanishing matrix elements when evaluated between

states belonging to the 56.

In terms of quark degrees of freedom, one can

think of these operators as being constructed from

quark-antiquark bilinears transforming according to

the adjoint 35 dimensional rep of SU(6), arising from

the direct product of two fundamental reps 6× 6̄ =

1+35. Then, on the right-hand side of Eq. (4), the 1 is

associated with a zero-quark operator (constant), and

the 35, 405, and 2695, are respectively connected

with one-, two-, and three-quark operators[11].

First order SU(6) symmetry breaking operators,

i.e., one-quark operators, which are constructed from

the 35 generators of the SU(6) group1), do not lift the

degeneracy between N and ∆ masses and do not gen-

erate nonzero neutral baryon charge radii and nonva-

nishing baryon quadrupole moments.

In order to split the supermultiplet and to differ-

entiate between spin 1/2 flavor octet and spin 3/2

flavor decuplet masses, the SU(6) symmetry break-

ing part of H must be spin-dependent. On the other

hand, the Hamiltonian transforms as an overall spin

scalar. Therefore, we need at least second order

SU(6) symmetry breaking operators, i.e., in the sim-

plest case, scalar products of two SU(2)J generators

in order for H to satisfy the two conditions of be-

ing spin-dependent and a spin tensor of rank 0 at the

same time.

Analogously, to explain the nonzeroness of the

neutron charge and decuplet quadrupole form fac-

tors it is required that the charge operator ρ be spin-

dependent. At the same time, for Coulomb multi-

poles of ρ we need spin tensor operators of even rank

in order to satisfy the time reversal and parity invari-

ances of the electromagnetic interaction. Thus, again

at least second order SU(6) symmetry breaking op-

erators are required for these observables.

Second order SU(6) symmetry breaking two-

quark operators can be constructed from direct prod-

ucts of one-quark operators. A general two-quark

spin-flavor operator transforms according to one of

the irreducible reps found in the direct product 35×
35

[3]

35×35=1+35+35+189+280+ ¯280+405. (5)

1)For one particle, the 35 generators of SU(6) are composed of three pure spin operators σi/2 with i =1,2,3, eight pure flavor

operators λk/2 with k = 1, · · · ,8, and 24 combined spin-flavor operators (σi/2) (λk/2).
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Two-quark operators transforming according to the

1 and 35 dimensional SU(6) reps can be reduced

to constants and one-quark operators in spin space,

so that only the four higher dimensional reps on the

right hand side of Eq. (5) remain. Of these only the

405 rep appears in the direct baryon ground state

product 5̄6 × 56 according to Eq. (4). Therefore,

within the 56 an allowed two-quark operator must

necessarily transform according to the 405 dimen-

sional rep of SU(6).

To have a better understanding of the type of op-

erators involved we perform a multipole expansion

of the relevant two-quark charge density ρ[2] in spin-

flavor space up to quadrupole terms

ρ[2] = aS[2] +bT[2], (6)

where the spin scalar S[2] and spin tensor T[2] opera-

tors are defined as

S[2] = −B
∑

i6=j

ei σi ·σj ,

T[2] = −B
∑

i6=j

ei (3σi zσj z −σi ·σj). (7)

Here, the constant B parametrizes the color and or-

bital matrix elements, and ei = (1 + 3 τ3 i)/6 is the

quark charge. Furthermore, σi and τi are the spin

and isospin Pauli matrices of the i-th quark. To

first order flavor (isospin) breaking, Eq. (6) repre-

sents the most general two-quark charge operator in

spin-flavor space. These tensors have been used in

calculating the 56 baryon ground state charge radii

and quadrupole moments[12—15].

We will see shortly that as a consequence of

the underlying SU(6) spin-flavor symmetry, the spin

scalar and spin tensor terms in Eq. (6) have fixed rela-

tive strengths a/b =−2. An evaluation of Eq. (6) be-

tween N and ∆ spin-flavor wave functions leads then

straightforwardly to the following results

r2
n = 4B a,

QN→∆ = 2
√

2B a, (8)

from which Eq. (2) is readily established.

Next, without reference to the quark model, we

show that the spin tensors of rank 0 and 2 in Eq. (6)

are different components of a general SU(6) tensor of

dimension 405 which are linked to each other by the

group algebra. A decomposition of the tensor Ω405

into subtensors with definite transformation proper-

ties with respect to the flavor and spin subgroups of

SU(6) reads

405 = (1,1)+(8,1)+(27,1)+

2(8,3)+(10,3)+(1̄0,3)+(27,3)+

(1,5)+(8,5)+(27,5), (9)

where the first and second entry in the parenthe-

ses refers to the dimensions of the SU(3)F and

SU(2)J representations respectively[16]. Thus, spin-

flavor symmetry breaking proceeds along the chain

SU(6)⊃SU(3)F×SU(2)J ⊃SU(2)I×U(1)Y×SU(2)J ,

where in a first step SU(6) symmetry is broken into

SU(3)F ×SU(2)J , and in a second step SU(3)F sym-

metry is reduced to SU(2)I×U(1)Y , i.e., an uncorre-

lated product of isospin and hypercharge symmetries.

For Coulomb multipoles, we are restricted to spin

tensors of even rank, and the second line in Eq. (9)

need not concern us here. Furthermore, we confine

ourselves to flavor octet tensors appropriate for elec-

tromagnetic interaction operators. Eq. (9) shows that

there is a unique spin scalar S transforming as (8,1)

and a unique spin tensor T transforming as (8,5) and

both are united in a common SU(6) tensor with di-

mension 405.

We expand the baryon charge density operator ρ

into Coulomb multipoles[17] up to quadrupole terms

ρ =
∑

J

iJ Ĵ T CJ
0 = ρC0 +ρC2 , (10)

with Ĵ =
√

2J +1 and where we have suppressed

the momentum dependence of the multipole opera-

tors and an overall factor
√

4π. The Coulomb multi-

pole operators T CJ
0 are irreducible tensors of rank J

and correspond to the second order SU(6) symmetry

breaking tensors Ω405

(µ s). We can now identify

ρC0 ∼ Ω405

(8,1),

ρC2 ∼ −
√

5Ω405

(8,5). (11)

The two-quark operators S[2] and T[2] in Eq. (6) have

just the same transformation properties and are rec-

ognized here as different components of a common

405 dimensional tensor operator Ω405.

According to the generalized Wigner-Eckart theo-

rem, the matrix elements of Ω405 evaluated between

the 56 multiplet can be factorized into a common re-

duced matrix element (indicated by a double bar),

which is the same for the entire multiplet, and an

SU(6) Clebsch-Gordan (CG) coefficient

M = 〈56νf
|Ω405

ν |56νi
〉=

〈56||Ω405 ||56〉
(

56 405 56

νi ν νf

)

. (12)
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The latter provide relations between the matrix ele-

ments of different components of the irreducible ten-

sor operator Ω405

ν and the individual states of the

56 dimensional baryon ground state supermultiplet,

which are labelled by νi and νf . Because SU(6) is a

rank five group, the label ν comprises five quantum

numbers to uniquely specify a state, three for SU(3),

e.g. total isospin T , isospin projection Tz, and hy-

percharge Y , and two for SU(2), e.g. total angular

momentum J and its projection Jz.

The SU(6) CG coefficient can be split into a uni-

tary scalar factor f405

(µ,s) and a product of SU(3)F and

SU(2)J CG coefficients as
(

56 405 56

νf ν νi

)

= f405

(µ,s)

(

µf µ µi

ρf ρ ρi

)

(Ji Ji,3J J3|Jf Jf,3) , (13)

where µ and s = 2J +1 denote the dimensionalities

of the SU(3) and SU(2) reps. The SU(3)F CG co-

efficient label ρ comprises the three quantum num-

bers ρ = (Y,T,Tz). Note that the SU(6) scalar fac-

tor f405

(µ,s), depends only on the dimensionalities of the

SU(6), SU(3)F and SU(2)J reps involved but not on

the SU(3) and SU(2) labels ρ and Jz.

Now, consider the two SU(6) matrix elements,

which are of interest here

r2
n = 〈56n|Ω405

(8,1)|56n〉=

r

(

− 2√
10

)

[

1√
3

(

−
√

1

20

)

−
√

3

20

]

= r
2
√

6

15
,

Qp→∆+ = −
√

5〈56∆+ |Ω405

(8, 5)|56p〉=

(−
√

5)r

(

1√
10

)[

2√
15

](

− 2√
10

)

= r
2
√

3

15
,

(14)

where r = 〈56||Ω405 ||56〉 is the SU(6) reduced ma-

trix element. The factor of -2 between the rank 0

(charge monopole) and rank 2 (charge quadrupole)

tensors is reflected by the SU(6) scalar factors[11, 18]

f405

(8,1) = −2/
√

10 and f405

(8,5) = 1/
√

10. The SU(3)F

flavor[19] and SU(2)J spin CG coefficients are explic-

itly shown. In the case of the neutron charge radius,

the two terms in the brackets correspond to SU(3)

CG with sublabels ρ = (0,0,0) and ρ = (0,1,0). As

usual, the isosinglet part of a flavor octet charge op-

erator is multiplied by 1/
√

3. From Eq. (14) and

Eq. (15) we obtain Eq. (2). We could have arrived at

this result much faster by noting that the spin-isospin

Clebsch-Gordan coefficients have already been calcu-

lated in Eq. (8) so that the SU(6) scalar factor would

have sufficed to establish Eq. (2).

3 Summary

We have seen that for the present application to

the neutron charge radius and the N→∆ quadrupole

moment, where first order SU(6) symmetry break-

ing does not contribute, the J = 0 and J = 2 multi-

pole components of the charge density ρ transform as

the second order SU(6) symmetry breaking tensors

Ω405

(8,1) and Ω405

(8,5) respectively. In contrast to sepa-

rate SU(2)J and SU(3)F symmetries or their direct

product SU(2)J×SU(3)F , broken spin-flavor SU(6)

symmetry provides a definite relation between spin

operators of different tensor rank that belong to the

same SU(6) tensor. As a result we obtain the relation

between the neutron charge radius and the N → ∆

quadrupole moment of Eq. (2) from a general SU(6)

symmetry analysis. We hope to address a general-

ization of this derivation including third order SU(6)

symmetry breaking in a future communication.
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