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Abstract In this talk, I present the results on the pole structure of pion-nucleon scattering in an analytic

model based on meson exchange. The analytic properties of scattering amplitudes provide important informa-

tion. Besides the cuts, the poles and zeros on the different Riemann sheets determine the global behavior of

the amplitude on the physical axis. Pole positions and residues allow for a parameterization of resonances in a

well-defined way, free of assumptions for the background and energy dependence of the resonance part. This

is a necessary condition to relate resonance contributions in different reactions.
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1 Introduction

The global properties of a scattering amplitude

are determined by the kinematics of the reaction,

leading to branch cuts associated with the opening

of reaction channels of stable or unstable particles.

The thresholds of two particles or quasi-two parti-

cles being on-shell are characterized by the branch

points. There is a right-hand and a left-hand cut

associated with s channel and crossed channel pro-

cesses, and there can be resonances, bound and vir-

tual states. Resonances and virtual states are asso-

ciated with poles on unphysical sheets. Thus, an an-

alytic continuation along the various branch cuts is

mandatory to access the resonance poles.

Models of the K matrix type[1—4]and meson

exchange models[5—11] provide unitary amplitudes

that have been constructed in the past to access

pion-nucleon scattering. In unitarized chiral per-

turbation theory, resonances are described by the

non-perturbative interaction of mesons and baryons

without the need to explicitly introduce resonance

propagators[12—16].

In the present study, we extend the amplitude of

the Jülich model to the various Riemann sheets in the

complex plane of the scattering energy s1/2 ≡ z.

The Jülich model is an analytic coupled channel

model based on meson exchange that respects two-

body unitarity. This model has been developed over

the past few years[7, 8], with its current form, as used

in this study, given in Ref. [9]. We point out the main

ideas in the following. The coupled channel scattering

equation is given by

T = V +V GT , (1)

where indices and sums over intermediate quantum

numbers have been suppressed. The V GT term

implies an integration of the three-momentum. G

is the intermediate meson-baryon propagator of the

channels with stable particles πN and ηN, and the

channels involving quasi-particles, σN, ρN, and π∆.

The pseudo-potential V iterated in Eq. (1) is con-
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structed from an effective interaction based on the

Lagrangians of Wess and Zumino[17, 18], supplemented

by additional terms[8, 9] for including the ∆ isobar,

the ω, η, a0 meson, and the σ. All these terms con-

tribute to the non-pole part. The pole part is given

by baryonic resonances up to J = 3/2 that have been

included in V as bare s channel propagators. The

resonances obtain their width from the rescattering

provided by Eq. (1).

While, for the channels with stable particles,

the analytic continuation to the complex z plane is

straightforward, the effective ππN channels require

special attention. It is known[19] that the quasi-

two particle singularities induce novel structures in

the amplitude, i.e. additional branch points in the

complex plane, apart from the right-hand ππN cut

along the physical axis which has the branch point at

z = mN +2mπ. The resulting sheet structure is non-

trivial and should be fully taken into account; these

additional branch points induce large variations of

the amplitude in their surroundings and have a large

impact on pole positions and residues.

2 Analytic continuation

For the Jülich model, the various sheets are ac-

cessed through contour deformation of the momen-

tum integration. In these proceedings we omit the

technical details which can be found in Ref. [11].

Only the main structures of the amplitude are

pointed out here. As an example of the analytic struc-

ture we consider the self energy

Πσ(z,k) =

∞∫

0

q2dq
(vσππ(q,k))2

z−2
√

q2 +m2
π
+iε

(2)

of the propagator

Gσ(z,k) =
1

z−
√

k2 +(m0
σ
)2−Πσ(z,k)

(3)

of two stable particles (ππ,πN,ηN). We have chosen

here the σ channel in ππ scattering. In Eqs. (2, 3),

vσππ is the vertex, m0
σ

is the bare σ mass and k is

the c.m. momentum. The analytic structure of Πσ is

shown in Fig. 1 as a function of the complex scatter-

ing energy z.

This ππ self energy has one branch point at the

two-particle threshold, and one right-hand cut along

the real z axis. The two Riemann sheets are analyti-

cally connected along this cut.

This structure is well-known and the analytic con-

tinuation can be obtained either through contour de-

formation of the q integration or through adding ex-

plicitly the discontinuity along the right-hand cut.

Fig. 1. The two Riemann sheets of the σ self-

energy [arb. units] as a function of z [MeV].

The left column shows the real and the right

column the imaginary part of Πσ.

The analytic continuation for the effective ππN

channels σN, ρN, and π∆ is different from the chan-

nels ππ, πN and ηN discussed before. The σN prop-

agator can be parameterized as[9]

gσN(z,k) =

1

z−
√

m2
N +k2−

√

(m0
σ
)2 +k2−Πσ(zσ(z,k),k)

,

GσN(z) =

∞∫

0

dk k2 F (k)gσN(z,k),

zσ(z,k) = z+m0
σ
−

√

k2 +(m0
σ
)2−

√

k2 +m2
N ,

(4)

with Πσ from Eq. (2) and F is a regulator.

It is easy to see that Πσ induces a right-hand cut

in the complex z plane with the corresponding branch

point at z = 2mπ +mN. Still, there is the quasi-two-

particle singularity coming from the denominator in

gσN from Eq. (4). One can show that this singularity

is closely connected to the σ pole in ππ scattering.

In Ref. [11] it is shown that a new branch point b2 is

induced that is located at

zb2 = zp+mN , (5)

where zp = 875−232 i MeV is the pole position of the

σ in the complex zσ plane. There is another branch

point at zb′
2
= z∗

b2
.

Thus, branch points in the complex z plane of

the effective ππN propagators are directly related to

the pole of the unstable particle. An unstable par-

ticle σ induces branch points in the σN propagator.
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These branch points are always on the second sheet

of GσN, as we have seen in the derivation of Eq. (5)

in Ref. [11], because this is where the resonance poles

are. Furthermore, as there is only one pole on the sec-

ond sheet of the σ propagator, there are no further

induced branch points of GσN in the z plane, apart

from b2 [and b′2 in the upper z half plane].

For the ρN and π∆ propagators, relation (5) holds

as well, with the corresponding masses and pole po-

sitions; in all cases, the validity has been confirmed

numerically.

The resulting analytic structure is shown in Fig.

2.

Fig. 2. The full analytic structure of the σN

propagator GσN. The branch point b1 is at

the ππN threshold and connects first and sec-

ond sheet. The branch points b2 and b
′

2 are

located at zb2 = zp +mN (zb′
2

= z
∗

p +mN) and

connect second with third, and second with

fourth sheet, respectively. The lines s1 and s2

indicate slices plotted in Fig. 3.

There is a branch point b1, located at zb1 = 2mπ+mN,

which connects first and second sheet1), both of them

with a cut along the real axis. As we have seen previ-

ously, this branch point and its cut are induced by the

cut of the σ self-energy Πσ. The additional branch

points b2 and b′2 lie in the complex plane, both of

them on the second sheet, and induce the two addi-

tional sheets three and four.

The sheet structure of the σN propagator (only

real part) is shown in Fig. 3, along the slices s1 and

s2 indicated in Fig. 2. The different lines (thick, thin

solid, dashed) are obtained following different paths

around the branch point b2. This is explained in de-

tail in Ref. [11]. The dashed lines indicate the pres-

ence of a complex conjugate structure, as required by

Schwartz’s reflection principle.

Fig. 3. The analytic structure of all four Rie-

mann sheets [arb. units], labeled 1 to 4, shown

close to Re z of the branch points b2 and b
′

2.

The implementation of the analytic continuation

in the Jülich model requires some extra work; these

technical details are discussed in Ref. [11].

3 Results

In the previous section, the analytic structures of

the propagators of channels with stable particles πN,

ηN and of effective ππN channels π∆, ρN, and σN

have been determined. The analytic continuations of

the propagators determine the analytic continuation

of the T matrix. In this section, we determine the

properties of T (z) in terms of poles and zeros in the

complex z plane.

For a channel with stable particles, there are two

sheets, while for unstable particles, there are four as

we have seen in the previous section. Thus, for the

channel space considered here, there are 2243 = 256

sheets corresponding to the two stable and three ef-

fective ππN channels.

Poles of the amplitude are searched for on the sec-

ond sheet, as defined in Ref. [11]. This second sheet

is determined from considerations of connectedness of

the sheet to the physical axis; poles on sheets that are

not directly connected to the physical axis have little

impact on the amplitude. This is discussed in detail

in Ref. [11].

The first sheet is free of poles as we have checked.

The results for pole positions and residues are sum-

marized in Table 1. The extracted resonance param-

eters are compared with other studies[20—22], all of

them accepted by the PDG[23].

1)The counting of the sheets refers in this section to the one channel case of σN.
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Table 1. Resonance parameters in the present

study. The z0 are the pole positions. The

moduli |R| and phases θ of the residues corre-

spond to the πN decay channel.

Re z0/ −2 Im z0/ |R|/ θ/(◦)

MeV MeV MeV

N∗(1440)P11 1387 147 48 −64
[20] 1359 162 38 −98
[21] 1385 164 40
[22] 1375±30 180±40 52±5 −100±35

N∗(1520)D13 1505 95 32 −18
[20] 1515 113 38 −5
[21] 1510 120 32 −8
[22] 1510±5 114±10 35±2 −12±5

N∗(1535)S11 1519 129 31 −3
[20] 1502 95 16 −16
[21] 1487
[22] 1510±50 260±80 120±40 +15±45

N∗(1650)S11 1669 136 54 −44
[20] 1648 80 14 −69
[21] 1670 163 39 −37
[22] 1640±20 150±30 60±10 −75±25

N∗(1720)P13 1663 212 14 −82
[20] 1666 355 25 −94
[21] 1686 187 15
[22] 1680±30 120±40 8±12 −160±30

∆(1232)P33 1218 90 47 −37
[20] 1211 99 52 −47
[21] 1209 100 50 −48
[22] 1210±1 100±2 53±2 −47±1

∆∗(1620)S31 1593 72 12 −108
[20] 1595 135 15 −92
[21] 1608 116 19 −95
[22] 1600±15 120±20 15±2 −110±20

∆∗(1700)D33 1637 236 16 −38
[20] 1632 253 18 −40
[21] 1651 159 10
[22] 1675±25 220±40 13±3 −20±25

∆∗(1910)P31 1840 221 12 −153
[20] 1771 479 45 +172
[21] 1874 283 38
[22] 1880±30 200±40 20±4 −90±30

For prominent resonances with large branching to

πN, the different analyses are in reasonable agree-

ment with the present results. For other resonances

that are wide and/or couple to πN only weakly, the

results are much more disperse and there are notice-

able differences among the results of Refs. [20—22]

and also to the results of the present study. Note that

for resonances such as ∆∗(1910) and N∗(1720), little

is known about residues and phases.

A special situation is given for the S11 partial wave

in which two resonance interfere making the extrac-

tion of resonance parameters more difficult. Table 1

shows that the values from the PDB[23] for both |R|

and θ are very different in the various studies for the

N∗(1535). This is due to the systematic uncertainties

from the close-by ηN threshold plus the interference

with the N∗(1650). The values of the present study

lie within these wide spans. This issue is discussed

in detail in Ref. [11] and has been presented on this

conference by S. Krewald[24].

3.1 The Roper resonance

The Roper N∗(1440)P11 resonance does not re-

quire a genuine pole term in the Jülich model[8]. In-

stead, the resonance shape is dynamically generated

from the coupled channel interaction together with

the unitarization from Eq. (1). Here, we can confirm

this result, because we have indeed found a pole for

this resonance.

Yet, there are poles on other sheets which we com-

ment on in the following. Consider a pole that cou-

ples only weakly to a given channel, i.e. its residue

to e.g. the ρN channel is small. Suppose the pole has

been found on the second sheet. Then, at the pole

position, the term (1−V G)−1 which appears in the

solution of Eq. (1) is singular. We consider an ele-

ment of this matrix and write symbolically, with G(2)
ρN

the ρN propagator on the second sheet,

(1−V G) = a+bG(2)
ρN = 0 (6)

omitting further indices, sums and integrations. a

contains the terms with intermediate states of other

channels. The weak coupling to ρN is reflected by

the fact that the b terms are small compared to the

a terms, and the replacement G(2)
ρN → G(3)

ρN does not

change much the position of the zero; the resonance

pole will reappear on the third or even fourth ρN

sheet.

Such replica of poles on other sheets have no phys-

ical implications. E.g., in the partial wave analy-

sis SP06 of Ref. [20], a pole of the Roper has been

found at z0 = 1359−81 i MeV on the second π∆ sheet

(in their counting: first sheet), and another one at

z0 = 1388− 83 i MeV on the third π∆ sheet (their

counting: second). Also in the present study, we find

a second pole of the Roper on the third π∆ sheet at

z0 = 1387−71 i MeV which is just a few MeV away

from the pole on the second sheet quoted in Table 1.

As discussed before, this is rather a replica of the

pole on the second sheet, without physical implica-

tions, than a genuinely new structure; indeed, within

the Jülich model the coupling strength of the Roper

to the π∆ channel is moderate; a change of sheets
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does not change much the resonance properties in this

special case.

The rather different pole positions and residues

of the two Roper poles in Ref. [20] indicate a larger

coupling to the π∆ channel, and in this case the

branch point b2 plays an important role as stressed

in Ref. [20] which makes a simple Breit-Wigner pa-

rameterization of the Roper questionable[20]. In the

Jülich model, the ππN inelasticity of the Roper is

rather given by the effective σN channel[8].

The σN channel has its quasi-two-body singular-

ity at much higher energies than the nominal posi-

tion of the Roper. Indeed, it is not the pole of the

σ which is important at the energies of the Roper,

but the ππ-correlation in the σ channel, that opens

at z = mN +2mπ. This correlation is taken into ac-

count through a fit to the ππ phase shifts, with the

result shown in Ref. [7], Fig. 10. There are residual

discrepancies, but those cannot change qualitatively

the result.

It still remains to be seen whether the strong σN

channel, as found in the Jülich model, can deliver

a consistent pictures in other reactions such as pion

electroproduction.

In Table 2, we compare the positions of the vari-

ous zeros of the present study (second sheet) with the

results from Ref. [25]. The results agree qualitatively.

Table 2. Position of zeros of the full amplitude

T in (MeV).

first sheet second sheet Ref. [25]

P11 1235−0 i S11 1587−45 i 1578−38 i

D33 1396−78 i S31 1585−17 i 1580−36 i

P31 1848−83 i 1826−197 i

P13 1607−38 i 1585−51 i

P33 1702−64 i –

D13 1702−64 i 1759−64 i

3.2 A pole on the third ρN sheet

The analytic properties of an amplitude with un-

stable particles can imply complex structures one of

which is discussed in the following. In Fig. 4, the

D13 partial wave is shown. The full solution is indi-

cated with the red solid lines and reproduces well the

partial wave analysis from Ref. [26].

The blue dotted lines represent the non-pole part

TNP as defined in Ref. [10], i.e. the amplitude with-

out the s-channel resonance exchange diagrams. The

pole term T P contains the s channel exchanges and

the full amplitude is given by T = T NP+T P[10].

A resonant structure in T NP is visible at around

z ∼ 1.7 GeV, which disappears in the full solution

T = T NP +T P. The second Riemann sheet of T NP,

however, is free of poles. Instead, the cut structure

from the ρN branch point b2 at zb2 = 1702−64 i MeV

from Fig. 2 is enhanced. This is a sign that there

is structure on the third ρN sheet. This is indeed

the case. Using the prescriptions from Ref. [11], it is

possible to analytically continue the amplitude of the

Jülich model to the third ρN sheet. Indeed, there is

a pole at 1613—83 i MeV. It has a strong coupling

to the ρN channel and a medium size coupling to πN

and is, thus, a state dynamically generated mainly

from the attractive interaction in the ρN channel. Re-

cently, a dynamically generated pole at a similar en-

ergy and also with a strong ρN S-wave coupling has

been found in Ref. [27].

Fig. 4. Amplitude in the D13 partial wave.

Fig. 5. The D13 pole in T
NP on the third ρN

sheet and its influence at the physical axis.

The insert shows schematically the structure

visible in T
NP.
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Figure 5 illustrates the effects of a pole on the

third sheet: A path from the pole position to the

physical axis must necessarily pass around the branch

point b2 to get from the third sheet to the second sheet

that connects to the physical axis. The part of the

path on the third sheet is indicated with the dotted

lines in Fig. 5. The straight red line indicates our

choice of the cut, where second and third sheet are

connected [cf. Ref. [11]]. Once on the second sheet

(solid blue line), it is possible to approach the physi-

cal axis on a straight path.

In other words, the pole on the third sheet can af-

fect the physical amplitude only via a detour around

b2. The structure in the physical amplitude is, thus,

rather located at the position of b2 than at the actual

pole position.

Summarizing, the branch points b2 of effective

ππN channels lead to complex structures of the am-

plitude. The structure that appears as a resonance

on the physical axis is fact a threshold effect of the

quasi-two-particle threshold ρN associated with b2; it

is induced by a pole at a different position, on a sheet

that is not directly accessible from the physical axis.

The situation of the two-pole structure of the

Roper discussed in the previous section is similar:

there is a Roper pole on the physical π∆ sheet, and

a pole on the hidden, third, π∆ sheet; the pole on

the hidden sheet, wherever it is, can never be seen di-

rectly but will appear as a washed out cusp from the

quasi-two-body singularity, always in superposition

with the contribution from the pole on the physical

sheet.

The pole part T P in D13 is given by the N∗(1520)

resonance, introduced as a genuine resonance state.

Once T P is summed to T NP, the full solution T =

TP +T NP is obtained, indicated with the solid lines

in Fig. 4. The dynamically generated structure in

TNP has then disappeared due to the mechanism of

resonance repulsion discussed in Ref. [10] and also

presented on this conference[24] for the case of the

∆(1232).

4 Summary

The analytic structure of the Jülich model has

been determined. There are two sheets for every

channel of stable particles and four sheets for every

effective ππN channel. Poles and residues have been

determined.

The amplitudes of the Jülich model are derived

within a field theoretical approach from Lagrangians

obeying chiral constraints. Data are described to a

high precision in the various partial waves. We claim

that with these ingredients, in combination with a

thorough treatment of the analytic properties, a re-

liable and precise extraction of pole positions and

residues becomes possible.
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