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Charged-particle pseudorapidity distributions in

Au+Au collisions at RHIC *
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Abstract Using the Glauber model, we present the formulas for calculating the numbers of participants,

spectators and binary nucleon-nucleon collisions. Based on this work, we get the pseudorapidity distributions

of charged particles as the function of the impact parameter in nucleus-nucleus collisions. The theoretical results

agree well with the experimental observations made by the BRAHMS Collaboration in Au+Au collisions at
√

s
NN

=200 GeV in different centrality bins over the whole pseudorapidity range.
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1 Introduction

Nucleus-nucleus collisions from the Relativistic

Heavy Ion Collider (RHIC) at the Brookhaven Na-

tional Laboratory (BNL) offer an opportunity to

study the strongly interacting matter in the labo-

ratory. RHIC was built to search for quark mat-

ter, or the so-called quark-gluon plasma (QGP).

The charged-particle pseudorapidity distribution

dNAB/dη is one of the first measurements made at

RHIC. It contains a lot of information about the hot

and dense matter produced in collisions[1—5] at the

initial time, hence it forms one of the most impor-

tant observables for exploring QGP. The distribution

of dNAB/dη over the entire range of pseudorapid-

ity η represents a time-integral of particle produc-

tion throughout the collision. It reflects all effects

that contribute to the production of charged parti-

cles. In addition to the influence of both hard and

soft production processes, it is sensitive to nuclear

effects in the initial parton distributions, as well as

to effects from hadronic re-interactions in the final

state[6]. Therefore, the distribution of dNAB/dη pro-

vides us with a feasible means for understanding the

mechanism of particle generation and interaction in

the final state.

Since the first run of RHIC in 2000, a great deal

of data have been accumulated and a comprehensive

analysis of these data has been carried out. The

experimental data about the charged-particle pseu-

dorapidity distributions in Au¦Au collisions have

been presented by the PHOBOS Collaboration[7],

the PHENIX Collaboration[8], and the BRAHMS

Collaboration[9]. All these results show that, for dif-

ferent centrality bins, the shapes and ranges of pseu-

dorapidity distributions are approximately the same.

But their heights decrease evidently (especially in the

central pseudorapidity region) with the increase of

centralities.

Ref. [10] has discussed the observed phenom-

ena by employing the overlapping cylinder model,

which is developed out of the thermalized cylin-

der model[11—15]. With the help of event generator

PYTHIA, Ref. [1] has also investigated the same ex-

perimental observations by virtue of the quark combi-

nation model. In our recent work[16], by making use of

repeated additions of rapidity distributions in binary

nucleon-nucleon collisions, we have got the distribu-

tion of dNAB/dη as the function of the impact pa-

rameter in nucleus-nucleus collisions. The theoretical

model gives a good description to the experimental

data in the central pseudorapidity region for different
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centrality bins. However, in the large pseudorapidity

region, our calculations are somewhat lower than the

data.

In this article, on the basis of the Glauber

model[17, 18], we first present the formulas for deter-

mining the number of participants, spectators and

binary nucleon-nucleon collisions in heavy-ion colli-

sions. These numbers are then used to constitute the

function form of dNAB/dη, which is impact param-

eter dependent and will have a comparison with the

experimental measurements made by the BRAHMS

Collaboration in different centrality Au+Au collisions

at
√

s
NN

=200 GeV.

2 The number of participants, specta-

tors and binary nucleon-nucleon col-

lisions in heavy-ion collisions

2.1 The number of participants and specta-

tors

The nucleons in the nucleus obey Wood-Saxon dis-

tribution

ρ(r) =
ρ0

1+exp[(r−r0)/a]
, (1)

where r0 = 1.19A1/3−1.61A−1/3, a = 0.54 fm[19, 20], A

is the mass number of the nucleus. ρ0 in Eq. (1) is de-

termined by

∫

V

ρ(r)dV = A. For nucleus Au, A = 197,

so r0 = 6.65 fm, ρ0 = 0.15046/fm3. Fig. 1 shows the

relation between nuclear density ρ(r) and radius r of

Au.

Fig. 1. The relation between nuclear density

ρ(r) and radius r of Au.

From this figure we can see that nucleons in Au

are mainly gathered at the range of r 6 5 fm. Beyond

this range, the number of nucleons decreases rapidly

and while r > 10 fm, there are nearly no nucleons. So

in the following calculation, we will take r=10 fm.

From nuclear density ρ(r), we have the nuclear

thickness function

T (s) =

∫
ρ(s,z)dz . (2)

It is the number of nucleons in the flux tube which

possesses the unit bottom area and locates at the dis-

placement s relative to the center of the nucleus (cf.

Fig. 2).

Fig. 2. The flux tube with the unit bottom area

located at the displacement s with respect to

the center of the nucleus.

Fig. 3. An A—B nucleus collision with impact

parameter b.

Considering the collision between the A—B nu-

cleus with impact parameter b, see Fig. 3. If the

total inelastic nucleon-nucleon cross section is taken

to be σin
NN, then σin

NNTB(s− b) is the number of nu-

cleons that a nucleon in nucleus A at position s will

encounter as it passes through nucleus B. As can be

seen from Fig. 3, s is the function of x and y, and the

length of it is

s(x,y) =
√

x2 +y2 .
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The probability of that nucleon surviving the col-

lisions is exp[−σin
NNTB(s−b)], and the probability suf-

fering the collisions is 1−exp[−σin
NNTB(s−b)].

Hence, for nucleus A, the number of participants

in the flux tube (Fig. 2) at position s (Fig. 3) is

nA(b,s) = TA(s){1−exp[−σin
NNTB(s−b)]}. (3)

Similarly, for nucleus B, the number of participants

in the same flux tube is

nB(b,s) = TB(s−b){1−exp[−σin
NNTA(s)]}, (4)

and

nPart(b,s) = nA(b,s)+nB(b,s) =

TA(s){1−exp[−σin
NNTB(s−b)]}+

TB(s−b){1−exp[−σin
NNTA(s)]}, (5)

is the total participants in the concerned flux tube.

Thus the number of participants in an A—B nucleus

collision with impact parameter b is

NPart(b) =

∫√r2
−

b2

4

−

√

r2
−

b2

4

dx

∫√r2
−x2

b−

√
r2

−x2

nPart(b,s)dy , (6)

where r is the radius of Au, and for equal-nucleus

collisions, the number of spectators of each nucleus

in the collision region is

NSpec(b) = NTotal(b)− NPart(b)

2
, (7)

where NTotal(b) stands for the total number of nu-

cleons of each nucleus in the collision region. For a

certain centrality collision, the mean number of total

nucleons, participants or spectators can be obtained

from equation

N̄ =

∫
N(b)d2

b

∫
d2b

. (8)

As far as an undeformed or isotropic nucleus is

concerned, quantities with b as variable depend only

on the size of b, but are independent of its direction,

such as NPart(b) = NPart(b). In this paper, we will

only discuss this simple case.

Table 1. The range of impact parameter b, the numbers of N̄Total, N̄Part and N̄Spec in different centrality

Au+Au collisions at
√

s
NN

=200 GeV. The numbers inside parentheses are the results given by the BRAHMS

Collaboration
[9]

.

centrality bins b/fm N̄Total N̄Part N̄Spec N̄NN

0—5% 0—3.31 195.81 347.3(357±8) 22.16 1018.3(1000±125)

5%—10% 3.31—4.69 189.08 293.3(306±11) 42.43 810.9(785±115)

10%—20% 4.69—6.63 168.63 231.2(239±10) 53.03 586.1(552±100)

20%—30% 6.63—8.12 138.48 163.6(168±9) 56.68 372.7(335±58)

30%—40% 8.12—9.37 110.72 113.9(114±9) 53.77 228.4(192±43)

40%—50% 9.37—10.48 86.50 76.0(73±8) 48.50 131.9(103±31)

Table 1 presents the range of impact parameter b,

the mean numbers of N̄Total, N̄Part and N̄Spec in differ-

ent centrality Au+Au collisions at
√

s
NN

= 200 GeV.

In calculations we take σin
NN=42 mb[21], and the cen-

trality bins are defined as the percentages of the total

inelastic cross section σin
AuAu=6.9 b. The values inside

the parentheses are the results given by the BRAHMS

Collaboration[9]. From Table 1 we can see that the

calculations from Eq. (6) and (8) are in good agree-

ment with the results from the BRAHMS Collabora-

tion.

2.2 The number of binary nucleon-nucleon

collisions

To get the number of binary nucleon-nucleon col-

lisions, dividing Eq. (1) by nuclear mass number A,

we have

ρP(r) =
ρ0

A{1+exp[(r−r0)/a]} . (9)

The meaning of which is the probability for finding a

nucleon in unit volume. From ρP(r), we have another

kind of nuclear thickness function

TP(s) =

∫
ρP(s,z)dz , (10)

which is the probability for finding a nucleon in the

flux tube as shown in Fig. 2. Hence, in an A—B

nucleus collision with impact parameter b, the prob-

ability for having a binary nucleon-nucleon collision

in a unit cross section is

TP(b) =

∫
TPA(s)TPB(s−b)d2

s , (11)

where the vector s is the same as that in Fig. 3.

The probability for having n times of binary nucleon-
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nucleon collisions is

P (n,b) =

(

AB

n

)

[

TP(b)σin
NN

]n[

1−TP(b)σin
NN

]AB−n
,

(12)

which certainly meets the condition of normalization

AB
∑

n=0

P (n,b) = 1 . (13)

The number of binary nucleon-nucleon inelastic colli-

sions in an A—B nucleus collision at impact param-

eter b can then be written as

NNN(b) =

AB
∑

n=1

nP (n,b)

AB
∑

n=1

P (n,b)

. (14)

Known from Eq. (12),

AB
∑

n=1

nP (n,b) = ABTP(b)σin
NN . (15)

Inserting Eqs. (13) and (15) into Eq. (14), it becomes

NNN(b) =
ABTP(b)σin

NN

1− [1−TP(b)σin
NN]AB

. (16)

Replacing N(b) in Eq. (8) by NNN(b), we can get

the mean number of binary nucleon-nucleon inelas-

tic collisions N̄NN for a certain centrality bin. Ta-

ble 1 shows N̄NN in each centrality Au+Au collision at√
s
NN

=200 GeV. The numbers inside the parentheses

are the results given by the BRAHMS Collaboration.

From this table we can see that the calculations from

Eq. (8) and (16) are very consistent with the results

from the BRAHMS Collaboration.

3 Charged-particle pseudorapidity

distributions in heavy-ion collisions

3.1 Charged-particle pseudorapidity distri-

butions in nucleon-nucleon collisions

For the sake of utilizing later, we will first say

some things about the charged-particle pseudorapid-

ity distributions in nucleon-nucleon collisions.

The charged particles generated in a nucleon-

nucleon collision arise from two ways. One is the

lost energy in collisions; the other one is two leading

particles. Known from Ref. [22], the pseudorapidity

distribution of charged particles in nucleon-nucleon

collisions can be written as

dNNN(
√

s
NN

)

dy
=

C(
√

s
NN

)

1+exp

[ |y|−y0(
√

s
NN

)

∆

] , (17)

where ∆ is the constant affecting the width of distri-

bution, C(
√

s
NN

) is a
√

s
NN

dependent function de-

termining the height of distribution, and y0(
√

s
NN

) is

another
√

s
NN

dependent function fixing the peak po-

sitions of distribution. In this paper we take them to

be

∆ = 0.7,

C(
√

s
NN

) = 0.525ln
√

s
NN

+0.02 ,

y0(
√

s
NN

) = 0.42ln
√

s
NN

+1.4 .

The relation between rapidity and pseudorapidity is

y =
1

2
ln

[

√

p2
T cosh2 η+m2 +pT sinhη

√

p2
T cosh2 η+m2−pT sinhη

]

, (18)

and the relation between pseudorapidity and rapidity

distribution is

dNNN(
√

s
NN

)

dη
=

√

1− m2

m2
T cosh2 y

dNNN(
√

s
NN

)

dy
.

(19)

Figure 4 shows the charged-particle pseudorapid-

ity distributions in p+p collisions at
√

s
NN

=200 GeV.

The stars are the experimental results measured by

the UA5 Collaboration[23]. The solid curve is the re-

sult from Eq. (19). From this figure we can see that

Eq. (17) gives a good description for the experimental

measurements.

Fig. 4. The charged-particle pseudorapidity

distributions in p+p collisions at
√

s
NN

=

200 GeV. The stars are the experimental mea-

surements made by the UA5 Collaboration
[23]

.

The solid curve is the result from Eq. (19).

3.2 Charged-particle pseudorapidity distri-

butions in heavy-ion collisions

In nucleus-nucleus collisions, the energy of a nu-

cleon will become less and less along with its collisions

with other nucleons. The lost energy is accumulated
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in the region around the center of mass and is fi-

nally frozen into the measurable charged particles in

the final state. It is obvious that the charged par-

ticles produced in a nucleus-nucleus collision come

from three channels. One is the lost energy; the

other one is the leading particles and the third one

is the spectators. As mentioned above, the first two

channels may be attributed to binary nucleon-nucleon

collisions. Hence, in nucleus-nucleus collisions, the

charged-particle pseudorapidity distributions may be

divided into two parts. One is from binary nucleon-

nucleon collisions; the other one is from spectators.

3.2.1 Charged-particle pseudorapidity distributions

from binary nucleon-nucleon collisions

In an A—B nucleus collision at impact parame-

ter b, the rapidity distribution of charged particles

produced in binary nucleon-nucleon collisions can be

expressed as

dNBina
AB (b)

dy
=

AB
∑

n=1

P (n,b)

n
∑

i=1

dNNN(
√

si
NN

,b)

dy
, (20)

where P (n,b), given by Eq. (12), is the probability for

the occurrence of n times of binary nucleon-nucleon

collisions. dNNN(
√

si
NN

,b)/dy is the rapidity distri-

bution in binary nucleon-nucleon collision with c.m.s.

energy of
√

si
NN

. In this paper, it is taken to have

the form as in Eq. (17). This means that the contri-

butions from both the lost energy and leading parti-

cles are all included in binary nucleon-nucleon colli-

sions. Moreover, it is worth while pointing out that

the transverse momentum of the charged particles in

the final state increases as the impact parameter b

decreases[24—26]. Thus, in Eq. (20), the rapidity dis-

tribution in binary nucleon-nucleon collisions depends

on the impact parameter b of nucleus-nucleus colli-

sions.

In order to get the distribution of dNBina
AB (b)/dy

from Eq. (20), we should know the c.m.s. energy in

each binary nucleon-nucleon collision. This is impos-

sible in fact. Here we will take a simple way to deal

with Eq. (20).

As the first step of simplification, we may ignore

the differences in c.m.s. energy for different binary

nucleon-nucleon collisions. For example, in Au+Au

collisions at
√

s
NN

= 200 GeV, we may just take
√

si
NN

=
√

s
NN

= 200 GeV for all binary nucleon-

nucleon collisions. Then, from Eq. (15) and (16), Eq.

(20) becomes

dNBina
AB (b)

dy
≈ NNN(b)

{

1− [1−TP(b)σin
NN]AB

}

×

dNNN(
√

s
NN

,b)

dy
, (21)

where, TP(b) and NNN(b) are given by Eq. (11) and

(16), separately. However, the fact is that the c.m.s.

energy in different binary nucleon-nucleon collisions

is different. The smaller the impact parameter, the

larger is the number of NNN(b) (see Table 1). Then,

the less the mean c.m.s. energy is for each binary

nucleon-nucleon collision due to more energy loss in

more times of collisions. Hence, the smaller the con-

tribution is to the yield of charged particles. Accord-

ingly, from this sense, dNAB(b)/dy should decrease

with NNN(b). Thus, we introduce the factor of en-

ergy loss β(b), which is defined as

β(b) = 1+α(b)[NNN(b)−1], (22)

where α(b) is a free parameter. Now, as the effect

of energy loss is taken into account, Eq. (21) can be

rewritten as

dNBina
AB (b)

dy
=

NNN(b)
{

1− [1−TP(b)σin
NN]AB

}

β(b)
×

dNNN(
√

s
NN

,b)

dy
. (23)

For p+p collision, NNN(b) = TP(b)σin
NN = 1

(Eq. (16)), the above equation reduces to the rapidity

distribution in the p+p collision. This is just what

we expect.

Finally, from Eq. (19), the charged-particle pseu-

dorapidity distribution from the binary nucleon-

nucleon collisions is

dNBina
AB (b)

dη
=

√

1− m2

m2
T(b)cosh2 y

dNBina
AB (b)

dy
. (24)

3.2.2 Charged-particle pseudorapidity distributions

from spectators

The spectators are those nucleons which do not

take part in the collisions as two nuclei penetrate each

other. They can be divided into two parts. One is

from the region of collision; the other one is from

the outside region of collision. Compared with the

former, the latter may be ignored, since during the

process of nucleus-nucleus collision, the nuclear mat-

ter in the outside region of collision is mainly broken

into nuclear fragments which make no contribution to

the charged particles in the final state. However, the

nuclear matter in the collision region is totally split

into nucleons due to the violent collisions. Hence, the

number of spectators approximately equals the total

number of nucleons minus the number of participants

in the collision region. Thus we have Eq. (7).

The pseudorapidity distribution of spectators can



No. 4 WANG Zeng-Wei et alµCharged-particle pseudorapidity distributions in Au+Au collisions at RHIC 279

be written as

dNSpec
AB (b)

dη
=

NSpec(b)

2cosh2[η−η0(b)]
, (25)

where η0(b) is another free parameter determining

the central position of distribution. Experimental

investigations[27] have shown that η0(b) increases with

the decrease of b. It is obvious that Eq. (25) meets

the condition of
∞∫

−∞

dNSpec
AB (b)

dη
dη = NSpec(b).

3.2.3 Charged-particle pseudorapidity distributions

in heavy-ion collisions

From Eqs. (24) and (25), we get the pseudora-

pidity distributions of charged particles in nucleus-

nucleus collisions as

dNAB(b)

dη
=

dNBina
AB (b)

dη
+

dNSpec
AB (b)

dη
. (26)

For Au+Au collisions at
√

s
NN

= 200 GeV, the numer-

ical results of the above equation are shown in Fig. 5.

The triangles and circles are the experimental data of

the BRAHMS Collaboration[9]; the dotted curves are

the results from spectators; the dashed curves are the

results from binary nucleon-nucleon collisions; and

the solid curves are the sums of dotted and dashed

curves. It can be seen from this figure that Eq. (26)

fits the experimental data perfectly in each centrality

bin over the whole pseudorapidity range. Fig. 5 also

shows that the binary nucleon-nucleon collisions are

in the predominant position in the distributions.

Fig. 5. Charged-particle pseudorapidity distributions in Au+Au collisions at
√

s
NN

=200 GeV. The triangles

and circles are the experimental data from the BRAHMS Collaboration
[9]

, the dotted curves are the results

from spectators; the dashed curves are the results from binary nucleon-nucleon collisions; and the solid curves

are the sums of dotted and dashed curves.

In calculations, m in Eq. (18), (19) and (24) is

approximately taken to be the mass of π. pT(b)

in these equations is obtained from experimental

measurements[26]. The free parameters α(b) and

η0(b) are determined by fitting the experimental data.

The values of them are summarized in Table 2. This

table shows that both pT(b) and η0(b) increase with

the decrease of b. This is consistent with the state-

ments given above. The values of α(b) in Table 2

decrease with the decrease of b. Substituting them

into Eq. (22), we get the variations of β(b) against

centrality bins as shown in Fig. 6. This figure shows

that the larger the number of NNN(b), the less the

number of charged particles produced in each binary

nucleon-nucleon collision (Eq. (23)). This is in accor-

dance with the analysis we made above.
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Table 2. The values of pT(b), α(b), and η0(b)

in each centrality bin.

centrality bins pT(b)/(GeV/c) α(b) η0(b)

0—5% 0.450 0.0033 4.6

5%—10% 0.449 0.0041 4.5

10%—20% 0.448 0.0054 4.0

20%—30% 0.443 0.0078 3.5

30%—40% 0.440 0.0118 2.8

40%—50% 0.430 0.0200 2.2

Fig. 6. The relation between β(b) and the cen-

trality bin.

4 Conclusions

By using the Glauber model, we calculated the

number of participants, spectators and binary

nucleon-nucleon collisions. From these numbers, we

derive the charged-particle pseudorapidity distribu-

tions in nucleus-nucleus collisions. The distributions

are divided into two parts. One is from the binary

nucleon-nucleon collisions, and the other one is from

the spectators. As the distributions are used in the

special case of Au+Au collisions at
√

s
NN

=200 GeV,

the fitting conditions to the experimental measure-

ments of the BRAHMS Collaboration are very good

in each centrality bin over the entire range of pseudo-

rapidity. The most important characteristics of our

model are few in free parameters (only two α(b) and

η0(b)), clear in the physical picture and simple in

treatment. Furthermore, our model can also be used

to describe the charged-particle pseudorapidity dis-

tributions in unequal-nucleus collisions.
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