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Abstract This paper focuses mainly on the vertex reconstruction of resonance particles with a relatively long
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1 Introduction

The reconstruction of vertices plays an impor-

tant role in high energy physics analysis. In the

time of bubble chamber experiments, vertex fits were

one of the primary means of particle identification.

Secondary vertices and their associated tracks could

be recognized visually. In today’s collider experi-

ment, the primary vertex is inside the beam tube,

whereas tracks are reconstructed outside and extrap-

olated back in order to reconstruct the primary and

secondary decay vertices.

The Beijing Spectrometer (BES) 0
[1, 2] is an up-

graded detector at the Beijing Electron Positron Col-

lider (BEPC)/ for probing τ -charm physics. It con-

sists of a beryllium beam pipe, a helium-based small-

celled drift chamber, a Time-Of-Flight (TOF) device,

a CsI(Tl) crystal calorimeter, a super-conducting

solenoidal magnet with a field of 1 tesla, and a muon

identifier of Resistive Plate Counters (RPC) inter-

leaved with the magnet yoke plates. A preliminary

version of the BES Offline Software System (BOSS)[3]

has been implemented successfully. The detector

simulation[4] is based on Geant4[5].

Resonance particles with relatively long lifetimes,

such as K0
S and Λ/Λ̄, etc., are abundantly produced

in the τ -charm energy region. At BES0, a series of

algorithms is developed to identify these particles in

both reconstruction and analysis environments. The

reconstruction of vertices serves the purpose of im-

proving the precision of momentum vectors of tracks

emerging from a common space point. The kinematic

constraints between the vertices of particle produc-

tion and decay are applicable to suppress the back-

ground in physics analysis.

2 Kinematic constraints between the

production and decay vertices

To introduce this subject the schematic diagram

in Fig. 1 is taken as an example: it shows a reso-

nance particle K0
S decaying to π+π− at a secondary

vertex after being produced in the beam interaction

region. The distance between its primary production

point near the beam center and decay point to π+π−

daughters is called the “flight distance” s, which is re-

lated to its proper time cτ in units of distance through

the relativistic formula (c is the velocity of light)

s = βct = γβcτ =
p

m
cτ , (1)

where p and m are the momentum and mass of the

resonance particle. Denoting the coordinates of the

production point as (xp,yp,zp) and the decay point

as (xd,yd,zd), in a fixed solenoidal magnetic field the

solutions of the equations of motion for a neutral par-

ticle are straight lines,

xp−xd +
px

m
cτ = 0,

yp−yd+
py

m
cτ = 0,

zp−zd+
pz

m
cτ = 0,

(2)

and helixes for a charged particle

xp−xd +
px

a
sin(acτ/m)+

py

a
(1−cos(acτ/m)) = 0,

yp−yd+
py

a
sin(acτ/m)− px

a
(1−cos(acτ/m)) = 0,

zp−zd+
pz

m
cτ = 0,

(3)

where a =−cBQ, B is the field strength in Tesla, and

Q is the charge, (px,py,pz) is the 3-momentum at the

decay point.

Fig. 1. Scheme of the kinematics between the

production and decay vertices of K0
S.

The three equations (Eq. (2) or Eq. (3)) provide

three constraints, so for one unknown cτ a total of two

degrees of freedom remains. To solve for cτ and its er-

ror, the variables in the constraint equations are clas-

sified into two categories: known (α) with errors and

unknown (cτ). The vector α contains 10 variables,

which are the 4-momentum plus the coordinates of

the production and decay points, i.e.

α = (px,py,pz,E,xd,yd,zd,xp,yp,zp)
T .

The constraint equations can be written generally as

H(α, cτ) = 0. Expanding around a convenient point

(αA, cτA) yields the linearized constraint equations

Dδα+Eδcτ +d = 0 ,

where D and E are the derivatives of H with respect

to α and cτ , respectively, δα = α−αA, δcτ = cτ−cτA,

and d = H(αA, cτA), and cτ can be solved through

an iteration process. Initially, αA can be set to the
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values of track parameters calculated from the decay

vertex finding algorithm and predetermined produc-

tion point, and cτA can be set to zero. The constraints

are incorporated using the method of Lagrange mul-

tipliers in which the χ2 is written as a sum of two

terms, e.g.

χ2 = (α−α0)
T
V

−1
α0 (α−α0)+2λ

T(Dδα+Eδcτ +d) ,

where α0 and V
α0 are the initial track parameters and

their covariance matrix, λ is a vector of the Lagrange

multinomial.

The solution of cτ and its covariance matrix can

be obtained by minimizing the χ2 with respect to α,

cτ and λ. After some matrix algebra, one gets

δcτ =−VcτE
T
λ0, Vcτ = (ET

VDE)−1 .

The auxiliary quantities λ0 and VD are defined as

λ0 = VD(Dδα0 +d), VD = (DV
α0D

T)−1,

where δα0 = α0 −αA. The same mechanism also

yields the updated α measurements

α = α0−V
α0D

T
λ, λ= λ0 +VDEδcτ,

as well as their covariance matrix and the correlation

with cτ :

V
α

= V
α0−V

α0D
T
VDDV

α0 +

cov(α, cτ)V −1
cτ covT(α, cτ),

cov(α, cτ) = −V
α0D

T
VDEVcτ .

χ2 is given by

χ2 = λ
T(Dδα0 +d).

From the solution of cτ and its error(Vcτ), one

can see that precision measurement of the lifetime re-

quires both the beginning and endpoint of the particle

flight vector to be determined accurately. The begin-

ning point is well determined by the beam spot size

perhaps by other tracks in the production region[6].

The endpoint is determined by fitting decay vertices

which will be described in the next section, and its

measurement accuracy is determined purely by the

tracking errors of the daughter particles.

3 Geometrical fit of K0

S
and Λ/Λ̄ decay

vertices

In the BESIII experiment, “V” type secondary

vertices are mostly encountered in the physics anal-

ysis and event reconstruction, such as the decay

vertices of K0
S and Λ/Λ̄, the interaction vertices of

γ-conversion, etc. These vertices are formed by

two charged tracks. To find the secondary ver-

tices, daughter tracks are forced to pass the common

point in space which can be determined by constraint

equations[7].

In a solenoidal B field, for a set of n tracks (param-

eterized by αi = (px,py,pz,E,x,y,z)Ti , i = (1, · · · ,n))

forced to pass through a common point x = (x,y,z),

each charged track i has two constraints, correspond-

ing to the bent and non-bent planes, respectively.

The constraint equations relating to the track para-

meter and vertex position have the following forms:

pxi∆yi−pyi∆xi−
ai

2
(∆x2

i +∆y2
i ) = 0,

∆zi−
pzi

ai

sin−1[ai(pxi∆xi +pyi∆yi)/p2
Ti] = 0,

(4)

where ∆xi = xx −xi, xx is the vertex position, xi is

the point at track i. ai = −cBQi, Qi is the charge,

B is the magnetic field and pTi is the transverse mo-

mentum.

The coordinates of the decay vertices can be ob-

tained by applying a least squares method:

χ2 = (α−α0)
T
V

−1
α0

(α−α0)+

(x−x0)
T
V

−1
x0

(x−x0)+

2λ
T(Dδα+Eδx+d), (5)

where α = (α0,α1, · · · ,αn)T are the track parameters

of the daughter tracks, x = (x,y,z) is the coordinate

vector of the decay vertex, V
α

and V
x

are their co-

variance matrices. δα = α−αA, δx = x−xA and λ

is a vector with Lagrange multipliers as components.

The subscript “0” denotes the initial values, while

“A” denotes the expansion point. The matrices of

D and E are the derivatives of the constraints with

respect to the track parameters and the vertex point.

The matrix d is a constant term built up from the

constraints.

The solution of Eq. (5) is similar to the procedure

for solving cτ described in Section 2. The mother par-

ticle, including the track parameters and covariance

matrix, is constructed by shifting its daughter’s track

parameters and covariance matrices to the vertex po-

sition. The correlations between tracks introduced

by the vertex constraint must be taken into account

when recalculating the daughter parameters and their

covariance matrices.

4 K0

S
reconstruction and selection

Neutral kaons are produced plentifully in J/ψ and

charmed meson decays. For a large decay branching

ratio and clean background contamination, events of

J/ψ → K∗0K̄0 with K∗0 → K±π∓ and K̄0 → K0
S →
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π+π− are generated for the study of K0
S reconstruc-

tion.

The event selection proceeds as follows. All

charged tracks are required to be well measured by

MDC with |cosθ| < 0.93, where θ is the polar an-

gle. For K0
S decay daughters, the track parameters

are required to satisfy |dz| < 40 cm, where dz is the

coordinate of the point of closest approach to the ori-

gin along the z direction. Tracks that are not associ-

ated with a K0
S decay are required to stem from the

interaction point, with |dρ| <1 cm and |dz| < 5 cm,

where dρ is the closest distance (including its sign)

to the origin in the xy plane. A track is classified as

a charged pion or a charged kaon by using the like-

lihood which combines the TOF and dE/dx infor-

mation. The track parameters and their covariance

matrices are corrected for energy losses and multi-

ple scattering according to the assigned particle hy-

potheses in the Kalman track fitting procedure. Ap-

propriate combinations of π+π− and K±π∓ pairs are

selected for K0
S reconstruction and the performance

studies. The invariant mass distributions of all π+π−

pairs are shown in Fig. 2(a).

Fig. 2. Invariant mass distribution of π+π− pairs before (a) and after (b) secondary vertex reconstruction.

The signal part is fitted with a Gaussian function while the background part is represented by a 2nd-order

Chebychev polynomial function.

Each π+π− combination is subjected to the sec-

ondary vertex reconstruction program. The result-

ing mass distribution is shown in Fig. 2(b). After

secondary vertex reconstruction, the K0
S mass resolu-

tions are significantly improved since the vector mo-

mentum of each track is recalculated at the mutual

crossing point rather than at the point of closest ap-

proach to the origin. Similar results could be obtained

in Λ baryon reconstructions.

The secondary vertices are somewhat apart from

the interaction point, so cutting on the decay length

(L) is useful to suppress backgrounds effectively,

where L is the displacement from the primary ver-

tex to the decay vertex. To optimize the K0
S selection

criteria, simulated ψ′′ →DD̄ data are investigated.

In the ψ′′ → DD̄ Monte Carlo data sample, all

pairs of oppositely charged tracks are considered.

Fig. 3(a) shows the mass distribution of the candidate

which is calculated at the vertex. In the mass range of

0.48—0.52 GeV/c2, a clear peak appears around the

mass of the K0
S, and the combinatorial backgrounds

distribute approximately uniformly. To extract the

ratio of the decay length to its error (L/σL) for the

signals and backgrounds, three mass windows are

opened in Fig. 3(a): one signal region is within a ±3σ

window centered at the nominal K0
S mass; two side-

band regions are in the window of (−6.5,−3.5)σ and

(3.5,6.5)σ deviated from the nominal K0
S mass, where

σ(∼ 2 MeV) is the mass resolution of K0
S. The cor-

responding L/σL’s in the sideband regions are drawn

in Fig. 3(b), which represent the combinatorial back-

grounds. Fig. 3(c) shows the distribution of L/σL af-

ter background subtraction, which represents the K0
S

signal. The peak near zero in Fig. 3(b) shows that

most of the combinatorial tracks come from the in-

teraction point. Negative decay lengths are obtained

for a small fraction of K0
S signals in Fig. 3(c), which is

caused by the limited detector resolution. Fig. 3(d)

shows the signal efficiencies and background contam-

ination rate variations with the L/σL selection crite-

ria. While increasing the cut value of L/σL, the com-

binatorial backgrounds decline more quickly than the

K0
S signal, especially in the region of −2 < L/σL < 2.

The typical value of σL is ∼ 1 mm in K0
S reconstruc-

tion.

If in the case of Fig. 3(d) we take L/σL > 2, cor-

responding to L > 2 mm, the achieved RS/B values

(the ratio of signal to background) are reasonably

acceptable for most physics analyses. The detailed

event selection criteria rely on the momentum of the

K0
S, the background level, the inconsistency between

the data and the Monte Carlo simulation. One may



432 Chinese Physics C (HEP & NP) Vol. 33

therefore vary the K0
S selection criteria in different

physics analyses. For example, decay modes of K0
Sπ

+,

K0
Sπ

+π+π− and K0
Sπ

+π0 are often to be reconstructed

as D+ tags. The loose K0
S cut may be chosen in K0

Sπ
+

mode since the background level is very low in the

final state, but more stringent K0
S selection criteria

have to be adopted in K0
Sπ

+π+π− and K0
Sπ

+π0 modes

to cut down the combinatorial background.

By following the procedure described above, a se-

ries of curves with various selection criteria in dif-

ferent K0
S momentum ranges for signal efficiency and

background rate can be obtained to optimize RS/B

and to reduce systematic uncertainties. The detailed

K0
S selection criteria can be determined by comparing

data and Monte Carlo simulation in each momentum

bin; one can create a look-up-table to help people to

optimize their analysis.

Fig. 3. (a) Mass distribution of reconstructed π+π− pairs in the ψ′′
→ DD̄ Monte Carlo sample; (b) L/σL

distribution for the combinatorial backgrounds; (c) L/σL distribution for the K0
S signal; (d) signal efficien-

cies and background contamination rate variations with L/σL. Circles: K0
S signal, squares: combinatorial

background.

5 Lifetime measurement

Like the invariant mass, lifetime is a proper quan-

tity of resonance particles in high energy physics,

which is closely interrelated with the particle’s de-

cay width. A relatively long living particle travels a

certain distance before decaying into its daughters in

the detector.

Supposing we want to measure the lifetime of the

decay of a particle in a generic particle physics exper-

iment; the first step in this measurement is to collect

a data sample with observed decays. Each decay is

described by a decay time, which is derived from a

flight distance between the production vertex and de-

cay vertex as shown in Fig. 1. For an ideal detector

the distribution of observed decay times is an expo-

nential function with an exponent that is the inverse

of the lifetime τ :

f(t) = exp(−t/τ) . (6)

A real detector has a finite experimental resolution

and detection efficiency on each measurement of the

decay time t. The measured decay time distribution

is a convolution of the ideal decay time (t′), the de-

tection efficiency (ε) and experimental resolution (G):

h(t) =

∫+∞

−∞

dt′ exp(−t′/τ) •ε(t′) •G(t, t′), (7)

where ε and G must be determined from the control

sample.

The decay of J/ψ→ K∗0K0
S with K∗0 → K±π∓ is

an “ideal” control sample. The data are generated

in two ways: one for a control sample in which the

lifetime of K0
S is set to be twice its nominal value[8];

another for a test sample where the lifetime of K0
S is

set to be its nominal value. The K0
S’s are tagged by

the reconstructed K∗ → Kπ in the above two sam-
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ples, where the charged pion and kaon are required

to come from the interaction point. The distribu-

tions of the invariant mass for each Kπ pair and its

recoiling mass are shown in Fig. 4(a) and Fig. 4(b).

About 24000 tagged K0
S’s are observed in 50000 gen-

erated samples. The detection efficiency can thus be

determined by counting the reconstructed K0
S’s in the

tagged samples.

Fig. 4. (a) Invariant mass distribution for K∓π± pairs and (b) the corresponding recoiling mass distribution

in control samples.

5.1 Experimental resolutions

The error of the decay length depends on the ac-

curacies of the decay vertex and production vertex,

which may vary with the value of the decay length.

As a first approximation, we assume that the res-

olution function is invariant over all decay lengths.

Thus we can evaluate the resolution function in sev-

eral ways: the ρ0 decay in J/ψ→ ρ0π0; the K∗0 decay

in J/ψ→K∗0K0
S; the combinatorial background sam-

ple in K0
S sidebands as shown in Fig. 3. Except for

the decay length (always equal to 0 for the above sam-

ples), the kinematic features of the two track vertices

formed by the π+π− or K∓π± pair are similar to that

of the K0
S decay vertex. Fig. 5(a) shows σ̄L for the ρ0

decay, the K∗0 decay, the combinatorial background

Fig. 5. (a) The square points represent σ̄L for the K0
S signal from estimation, the triangular points represent

the resolution of the decay length by using Monte Carlo truth information, the σ̄L calculated from the ρ0

decay, the K∗0 decay and the K0
S sideband events are shown by the dashed line, the dotted line and the solid

line, respectively; (b) the square and triangle points represent the ∆L distribution for the events from the

K0
S signal and sideband regions, the smooth line represents the experimental resolution function after σ̄L

correction; (c) the circles and square points represent the efficiencies of the K0
S reconstruction and secondary

vertex reconstruction; and (d) the K0
S proper time distribution and fit.
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and the K0
S decay for different measured decay

lengths, where σ̄L is the average value of σL which is

calculated by the program of secondary vertex recon-

struction. Supposing the detector resolution is pro-

portional to σ̄L, we can model the detector resolution

with the events from the K0
S sideband. The sample

from the ρ0 decay and the K∗0 decay can be used to

study the systematic errors.

Figure 5(b) shows the ∆L distributions for the

combinatorial backgrounds and the K0
S signal, where

∆L = Lmeasure −Ltruth is the difference between the

measured decay length (Lmeasure) and the generated

decay length (Ltruth). For the combinatorial back-

grounds, Ltruth = 0; and for the K0
S signal, Ltruth can

be read out in the Monte Carlo generation. The ∆L

distribution of combinatorial backgrounds can be fit-

ted by a double Gaussian which represents the de-

tector resolution, and a 2nd-order polynomial which

represents the background contamination. There are

six parameters to model the experimental resolution.

They are: fi representing the fractions, µi represent-

ing the shift of peak values and σi standing for the res-

olutions, where i = 1,2, µ1 = µ2 is required in the fit.

To address the resolution function in different ranges

of the decay length, the σi’s are scaled by a factor

of σ̄L(L)|sig/σ̄L|back, where σ̄L|back and σ̄L(L)|sig are

the average values of σL for the combinatorial back-

grounds and the K0
S signals. The scaled resolution

function is also drawn in Fig. 5(b) which is quite con-

sistent with the ∆L distribution of the K0
S signal.

5.2 Detection efficiencies

Supposing the detection efficiency is 100% , the

decay time distribution in Eq. (7) would be predicted

as:

h(t) =

∫+∞

−∞

dt′ exp(−t′/τ) • G(t, t′). (8)

Applying the resolution function G (which is deter-

mined from Fig. 5(a)) to Eq. (8), we can get the ex-

pected decay length distribution. The detection effi-

ciencies can be extracted by comparing the number

of observed and expected events in each bin. Fig. 5(c)

shows the dependence of the K0
S reconstruction effi-

ciency on the decay length, which can be modeled

by a 2nd-order polynomial. The efficiency of the

secondary vertex reconstruction can be figured out

by counting the number of reconstructed K0
S in the

more stringent tagged sample in which at least a

pair of π+π− tracks are required. The obtained ef-

ficiencies for the secondary vertex reconstruction are

also drawn in Fig. 5(c). From the figure, it can be

seen that detection efficiency loss is mainly caused

by tracking efficiencies, especially in the larger decay

length regions.

5.3 Results and systematical estimations

The experimental resolution and detection effi-

ciency functions have been determined in the con-

trol sample. The probability density function (p.d.f.)

for lifetime measurements is constructed according to

Eq. (7) and fits the data. The proper time (cτ) dis-

tribution in the test sample is shown in Fig. 5(d).

The fitting procedure is done by the RooFit package[9]

in which a technique of numeric convolution integra-

tion is applied to normalize the p.d.f.. Finally we get

cτ = (2.66± 0.02) cm which is consistent with the

input value of 2.68 cm; the error is statistical only.

The major systematic uncertainties in the K0
S life-

time measurements come from the determination of

the experimental resolution and the detection effi-

ciency function, the PID (particle identification) and

tracking efficiencies and the disagreement between

data and Monte Carlo. The systematic uncertain-

ties due to dE/dx PID can be estimated by tracks

from the interaction point. For the TOF PID the

flight time should be decompressed in two steps: 1)

the flight time of the K0
S from the production ver-

tex to the decay vertex and 2) the flight time of the

daughter charged pion from the decay vertex to the

TOF counter. After the flight time correction, the

systematic uncertainties due to TOF PID could be

estimated. The additional systematic uncertainties

of the lifetime of the reference particle should be in-

terpreted as the disagreement between the data and

the Monte Carlo.

The systematic uncertainties in the experimental

resolution can be estimated by modeling the resolu-

tion function from different samples, e.g. the sam-

ple of ρ0 and K∗0 decays. The systematic uncertain-

ties in the detection efficiencies can be addressed by

changing the efficiency curve from a 2nd-order poly-

nomial to a 1st-order and/or 3rd-order polynomial.

To evaluate the systematic uncertainties in the track-

ing procedure two track finding algorithms[10, 11] are

investigated. The estimates are summarized in Ta-

ble 1. The uncertainties in particle identification and

the disagreement between the data and Monte Carlo

are not included in this estimation.

Table 1. Systematic uncertainties in the life-

time measurement.

item uncertainties/cm

experimental resolution ±0.01

detection efficiencies ±0.02

track finding algorithm ±0.03



No. 6 XU Min et alµDecay vertex reconstruction and 3-dimensional lifetime determination at BES0 435

6 Discussion

Currently the secondary vertex reconstruction al-

gorithm has been implemented in C++ language and

been applied to physics analysis. It uses the track

parameters at the closest point to the origin. While

the decay vertex is outside the beam pipe or outside

the inner radius of the drift chamber, material ef-

fects, such as multiple scattering and energy loss for

charged tracks, may be corrected improperly. The

Kalman track fitting algorithm provides two sets of

track parameters at the closest point to the origin

and at the point of the first hit layer in the drift

chamber. To investigate the effect of material cor-

rections, J/ψ → ΛΛ̄ events are generated. The Λ

baryons are reconstructed by using different initial

track parameters. We find that the invariant mass

of Λ/Λ̄ is always the same around its nominal value;

however, the reconstructed momentum has some off-

sets. Fig. 6 shows the relation of ∆P and R, where

∆P = Prec−Pgen is the difference between the recon-

structed momentum (Prec) and the generated momen-

tum (Pgen), R =
√

x2 +y2 is the traversed distance of

the Λ decay vertex in the x-y plane.

About 4 MeV differences are caused by apply-

ing different initial daughter track parameters. For

R < 3 cm, corresponding to the inner radius of the

beam pipe, the initial daughter track parameters at

the closest point to the origin may give correct results.

For R > 6 cm, corresponding to the inner radius of the

drift chamber, the initial daughter track parameters

at the first MDC hit layer may return a correct ∆P .

But for 3 cm < R < 6 cm, both sets of initial track

parameters are not properly corrected. It seems that

the current configuration of the Kalman track fitting

is not perfect for the tracks of the decay daughters.

A suggestion is naturally brought forward: the mate-

rial effects should be corrected to the decay position

in the Kalman track fitting procedure. So it is cru-

cial to combine the vertex reconstruction and Kalman

track fitting. The daughter tracks must be refitted if

the decay vertex is found to be outside the beam pipe.

Such work is in progress[12].

Fig. 6. ∆P versus R for Λ baryons using dif-

ferent initial track parameters. Full circles:

the initial daughter track parameters at the

closest point to the origin have been used, tri-

angles: the initial daughter track parameters

at the first hit layer in the drift chamber have

been used.
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