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Critical behavior of a dynamical percolation model *
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Abstract The critical behavior of the dynamical percolation model, which realizes the molecular-aggregation

conception and describes the crossover between the hadronic phase and the partonic phase, is studied in detail.

The critical percolation distance for this model is obtained by using the probability P∞ of the appearance of

an infinite cluster. Utilizing the finite-size scaling method the critical exponents γ/ν and τ are extracted from

the distribution of the average cluster size and cluster number density. The influences of two model related

factors, i.e. the maximum bond number and the definition of the infinite cluster, on the critical behavior are

found to be small.
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It is predicted that under the condition of high

temperature and/or high density the strongly inter-

acting matter will undergo a deconfinement phase

transition from the hadronic matter to the quark-

gluon plasma — QGP[1]. On the predicted QCD

phase diagram, at the high density, low tempera-

ture region there is a first order phase transition line,

while at the low density, high temperature there is

an analytic crossover process predicted by the lattice

QCD[2].

Recently, the molecule-like aggregation model

(MAM) is proposed[3] to understand the mechanism

of crossover and a bond-percolation model is con-

structed to simulate the cluster formation in the

crossover process. However the critical behavior of

the model has not been discussed. The aim of the

present article is to take up this problem and study,

in detail, the finite-size critical behavior of the bond

percolation model.

In the lattice version of the usual geometrical

bond-percolation procedure, “a cluster is defined as a

group of nearest-neighboring occupied sites that are

linked by occupied bonds with occupation probabil-

ity p, which is a model parameter to control phase

transition. The cluster size is the number of sites in a

cluster”[4]. The occupation probability where the in-

finite clusters appear is called critical probability pc,

i.e. when p 6 pc there is no percolating infinite cluster

while when p > pc infinite clusters form.

In our dynamical percolation procedure, the per-

colation bond is given a dynamical meaning which

is referred to as quark delocalization[5] and the oc-

cupation probability p of the bond is replaced by the

maximum delocalization distance S between hadrons,

within which the hadrons can be connected by bonds.

Let us now turn to review briefly the bond-

percolation model[3]. In the simplified 2-D version

of the model the initial system is set to be a hadron

gas consisting of 2×197 cells, which are small circles

of hard-core radius re = 0.1 fm distributed randomly

in a big circle of radius R = 7 fm. In the following,

the system size is characterized by L = R/re. A cell

which departs from the center of the big circle farther

than R−re is called a boundary cell. The percolation
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procedure is as follows:

(1) Randomly select a cell α as a mother cell.

(2) Find the candidate cells that can form bonds

with the mother cell, which will be referred to as

bond-candidate cells, and are defined as those cells

with |r − rα| 6 S. It is assumed that each cell can

be connected by nb bonds at most. So we randomly

select nb cells from the bond-candidate cells to form

nb bonds connected to the mother cell α. These are

referred to as daughters. If the number of candidate

cells is less than nb, then the number of daughters is

equal to the candidate number.

(3) Find the bond-candidate cells for the daugh-

ters of cell α. For every daughter find her bond-

candidate cells from the remaining unbounded cells,

and randomly select nb − 1 bond-candidate cells to

form bonds. The cells connected to daughters are

called granddaughters.

(4) Repeat the procedures to granddaughters and

granddaughters’ daughters ..., we will get a clus-

ter, which grows until no bond-candidate cell can be

found any more.

(5) Then choose another cell β from the left un-

bounded cells as another mother cell, and repeat the

procedure starting from step (2).

In this way, every cell is assigned to a cluster. In

every cluster, find the boundary cells if any, calculate

the distance between every two boundary cells, and

denote the maximum distance by d. A cluster with

d > d0 is called an infinite cluster, where d0 is a pa-

rameter, and the appearance of the infinite cluster is

taken as the formation of a new phase of matter—

QGP.

It needs to be noted that in the above percolation

procedure, the maximum number nb of bonds that

a cell can be connected with and the value of d0 in

the definition of the infinite cluster are adjustable.

At present we choose nb = 3 and d0 =
√

2R. Later

we will study the effect of these two factors on the

critical behavior.

In the percolation theory, the typical quantities

usually studied are the critical percolation probabil-

ity, the average cluster size, the cluster number den-

sity and the critical exponents.

In the molecule-like aggregation scheme the cross-

over from hadronic gas to QGP is controlled by the

appearance of an infinite cluster. The probability P∞

for the appearance of an infinite cluster is defined as:

P∞ =
N∞

N
, (1)

where N∞ is the number of events with an infinite

cluster, N is the total number of events in the sam-

ple. P∞ as defined in Eq. (1) is referred to by some

authors[6] as the percolation cumulant, is analogous

to the Binder cumulant[7], which is a powerful tool to

extract the critical point for the finite size system[6].

If we calculate P∞ as a function of S for different

system size, all curves for the not too small system

size will cross at the critical point Sc for percolation

transition, cf. Fig. 1, where the dependence of P∞ on

S is plotted for a system size of L = 70∼ 350 with the

same particle number density. We see that at a cer-

tain value of S, P∞ starts to increase from zero and

gradually arrives at the saturation value 1 as the in-

creasing S. For an infinite system P∞ must increase

from 0 abruptly to 1 at S = Sc. We determine the

critical point Sc by the cross point of the curves in

Fig. 1. Since the finite size effect is large for small

L, we only consider the cross point of the curves for

L > 70. The calculation resolution for S is 0.001 as

shown in the smaller panel and the evaluated critical

point from this figure is Sc = 0.696±0.003 fm.

Fig. 1. The dependence of P∞ on percolation distance S for different system size. The calculation resolution

in the smaller panel is 0.001.
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Cluster size is the number of sites in a cluster.

The average cluster size χ is defined as

χ =
1

∑′∞

k=1
(nkk)

∑′∞

k=1
k ·(nkk) , (2)

where nk is the number of clusters of size k and the

prime on the summation symbol means that the infi-

nite cluster is excluded. This variable indicates how

big on average the finite clusters are. For infinite sys-

tem size, the average cluster size diverges for S →Sc

as a power law with critical exponent −γ in terms of

the distance of S from Sc, that is,

χ(S)∝ |S−Sc|−γ for S →Sc .

Realistically, the percolation models used are of finite

size determined by the size of the colliding nuclei. The

finite-size scaling method[9], investigating the scaling

of quantities as a function of lattice size at S = Sc, is

adopted to extract values for the critical exponents.

From the dependence of χ on system size L at S = Sc,

χ(L;Sc)∝Lγ/ν for 1�L� ξ , (3)

the critical index can be extracted, where ξ is the cor-

relation length and its divergence at S = Sc is chara-

cterized by the critical exponent ν with

ξ(S)∝ |S−Sc|−ν for S →Sc.

At S = Sc, the correlation length is infinite, which

guarantees that L � ξ in Eq. (3). Fig. 2 shows the

distribution of average cluster size χ as a function of

percolation range S for different system size L. We

see that χ(S) develops a peak when S → Sc. The

height of the peak increases with the increase of sys-

tem size. The dependence of χ on system size L when

S = Sc is shown in Fig. 3 as open circles. Eq. (3) is

used to fit this distribution and we obtain γ/ν =

1.603± 0.005. The fitting result is shown in Fig. 3

Fig. 2. The distribution of average cluster size

χ with respect to the percolation distance S

for different system size.

as a solid curve. For percolation with cells located

on the sites of a two dimensional lattice, theory

gives γ/ν = 43/24 ≈ 1.79 independent of the lattice

details[8].

Fig. 3. The average cluster size at critical per-

colation distance Sc as a function of system

size L. The solid line is a fitting to the power

law function in Eq. (3).

The cluster number density is defined as

n(k,S) =
N(k,S;L)

Ntot

, (4)

where N(k,S;L) is the cluster size frequency, Ntot is

the total number of cells in the system. There are two

distinct behaviors of n(k,S), depending on whether

S 6= Sc or S = Sc. When S 6= Sc we have

n(k,S)∝







k−τ for 1 6 k 6 kξ

decay rapidly for k > kξ

. (5)

Figure 4 showns the cluster number density distri-

bution for different percolation distance S at L = 350.

When S = Sc, the characteristic cluster size kξ is infi-

nite, so that for any finite cluster, k� kξ. Therefore,

the cluster number density decays as a power law for

large cluster sizes

n(k,Sc)∝ k−τ for k� 1. (6)

To get the critical exponent τ , the system size is set

to L = 350 to satisfy the condition k � 1. The dis-

tribution of n(k,Sc) is plotted in Fig. 4 with a solid

line and fitted by a power law function in the range of

2 < k < 1000. From the fitting, we get τ = 1.84±0.0007

and the theoretical prediction of τ for the percolation

with cells on the sites of the two-dimensional lattice

is 187/91≈ 2.05[10].

In our present percolation procedure, the maxi-

mum number of bonds for a cell is set to be nb = 3.

Actually this value could be varied and this problem

in percolation theory is called percolation with restri-
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Fig. 4. Cluster number density distribution at

different percolation distance for system size

L = 350. The cluster number density distribu-

tion at S = Sc is fitted by a power law function

in the range 2 <k < 1000.

cted valence[11]. We study the influence of the allowed

maximum number of bonds on the critical behavior.

Fig. 6(a) shows the dependence of P∞ on percolation

distance for various maximum bond numbers. It can

be seen that the case with nb = 2 is different from the

case with nb > 2. The critical percolation distance Sc

will not be affected by the bond number nb provided

nb > 2, which is in accordance with the published

results[11, 12].

Fig. 5. A sketch of the three different defini-

tions of the infinite cluster.

Fig. 6. The dependence of critical percolation distance on two adjustable model parameters when system size

is L = 70. (a) P∞(S) for a varied maximum number of bond nb, (b) P∞(S) for different definitions of infinite

clusters.

The other factor which may affect the critical be-

havior is the definition of an infinite cluster. In our

present definition, a cluster with d > d0, d0 =
√

2R is

called an infinite cluster, which spans from one half of

the circle to the other half. This definition is rather

loose and it is interesting to see what happens for

tighter definition. Fig. 5 is a sketch to depict dif-

ferent definitions of an infinite cluster. In Fig. 6(b)

we show P∞(S) for the above three different defini-

tions. It can be seen that the dependence of P∞ on

S is slightly shifted to larger S for tighter definitions

of an infinite cluster. This tendency is easy to un-

derstand since a tighter definition will result in less

formation probability of an infinite cluster. However,

the effect coming from the definition of an infinite

cluster is small and it could be taken as a system-

atic error for the determination of Sc. For these two

factors, we also calculate the cluster number density

and the corresponding critical exponent τ . It turns

out that the effect of these two factors is very small
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and the corresponding critical exponents τ have only

about 0.5% difference.

To summarize, we investigate the critical behav-

iors of the finite-size bond-percolation model which

is used to realize the molecule-aggregation model for

crossover from the hadronic phase to the partonic

phase. We obtain the critical percolation distance

by a finite-size scaling method for this model and ex-

tract critical exponents γ/ν and τ which are within

10% difference with that of the percolation with cells

on the sites of a two-dimensional lattice. From our

calculation we find that when the maximum number

of bonds for a cell to be connected with is greater

than 2, it has negligible influence on the critical be-

havior of the bond percolation model. On the other

hand, the definition of an infinite cluster has only a

small effect on the model, which can be taken as a

systematic error when determining Sc.
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