
CPC(HEP & NP), 2009, 33(8): 626—628 Chinese Physics C Vol. 33, No. 8, Aug., 2009

Ultra-high energy cosmic rays threshold in

Randers-Finsler space *
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Abstract Kinematics in Finsler space is used to study the propagation of ultra high energy cosmic rays

particles through the cosmic microwave background radiation. We find that the GZK threshold is lifted

dramatically in Randers-Finsler space. A tiny deformation of spacetime from Minkowskian to Finslerian allows

more ultra-high energy cosmic rays particles to arrive at the earth. It is suggested that the lower bound of

particle mass is related with the negative second invariant speed in Randers-Finsler space.
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1 Introduction

Decades ago, Greisen, Zatsepin and Kuz’min

(GZK)[1] discussed the propagation of ultra-high

energy cosmic rays (UHECR) particles through cos-

mic microwave background radiation (CMBR)[2]. Due

to the photopion production process by CMBR, the

UHECR particles will lose their energies drastically

down to a theoretical threshold (about 5×1019 eV).

That is to say, the UHECR particles whose energy

beyond the threshold can not be observed[3]. This

strong suppression is called the GZK cutoff. However

hundreds of events with energies above 1019 eV and

about 20 events above 1020 eV have been reported[4].

The latest UHECR data[5] identified with the GZK

cutoff are 5 standard deviations. And the measured

energy of the GZK cutoff is (5±0.5±0.9)×1019 eV.

Also, the Pierre Auger collaboration[6] rejected the

hypothesis that the cosmic rays spectrum continues

with a constant slope above 4×1019 eV, with a sig-

nificance of 6 standard deviations.

Although the latest experiment data appear to be

consistent with the GZK cutoff, investigating the pos-

sible violation of the GZK cutoff is still of great the-

oretical interest. One should notice that the latest

data[5, 6] are of 5 or 6 standard deviations. Small vi-

olations on the GZK cutoff can not be excluded.

The violation of the GZK cutoff strongly cor-

responds with the violation of Lorentz Invariance

(LI)[7]. The violation of the LI and the Planck scale

physics have long been suggested as possible solutions

of the cosmic rays threshold anomalies[7]. LI is one

of the foundations of the Standard Model of particle

physics. Coleman and Glashow have set up a per-

turbative framework for investigating possible depar-

tures of local quantum field theory from LI[8, 9]. In

a different approach, Cohen and Glashow suggested
[10] that the exact symmetry group of nature may

be isomorphic to a subgroup SIM(2) of the Poincare

group. The mere observation of ultra-high energy

cosmic rays and the analysis of neutrino data give an

upper bound of 10−25 on the Lorentz violation[11].

In fact, Gibbons, Gomis and Pope[12]

showed that the Finslerian line element ds =

(ηµνdxµdxν)(1−b)/2(nρdxρ)b is invariant under the

transformations of the group DISIMb(2). The very

special relativity is a Finsler geometry.

Recently, we proposed a gravitational field equa-

tion in Berwald-Finsler space[13]. The asymmetric

term in the field equation violated LI naturally. A

modified Newton’s gravity is obtained as the weak

field approximation of the Einstein’s equation in

Berwald-Finsler space[14]. The flat rotation curves

of spiral galaxies can be deduced naturally without
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invoking dark matter in the framework of Finsler ge-

ometry.

In this letter, we use the kinematics in Randers-

Finsler space to study the propagation of the UHECR

particles through CMBR. We obtain a deformed GZK

threshold for the UHECR particles interacting with

soft photons, which depends on an intrinsic parame-

ter of the Randers-Finsler space[15].

Denote by TxM the tangent space at x∈M , and

by TM the tangent bundle of M . Each element of

TM has the form (x,y), where x ∈ M and y ∈ TxM .

The natural projection π : TM → M is given by

π(x,y)≡x. A Finsler structure[16] of M is a function

F : TM → [0,∞).

The Finsler structure F is regularity (F is C∞ on the

entire slit tangent bundle TM\0), positive homogene-

ity (F (x,λy) = λF (x,y), for all λ > 0) and strong con-

vexity (the n×n Hessian matrix gij ≡
∂2

∂yi ∂yj

(

1

2
F 2

)

is positive-definite at every point of TM\0).

It is convenient to take y≡
dx

dτ
to be the intrinsic

speed on Finsler space.

2 GZK threshold in Randers-Finsler

space

In 1941, G Randers[17] studied a very interesting

class of Finsler manifolds. The Randers metric is a

Finsler structure F on TM with the form

F (x,y)≡

√

ηij

dxi

dτ

dxj

dτ
+

ηijκ
i

2m

dxj

dτ
. (1)

The action of a free moving particle on Randers

space is given as

I =

∫ r

s

Ldτ = m

∫ r

s

F

(

dx

dτ

)

dτ . (2)

Define the canonical momentum pi as

pi = m
∂F

∂
(

dxi

dτ

) . (3)

Using Euler’s theorem on homogeneous functions, we

can write the mass–shell condition as

M(p) = gijpipj = m2 . (4)

The modified dispersion relation in Randers

spaces is of the form

m2 = ηijpipj −ηijκi(µ,Mp)pj +O(κ2) , (5)

where we have used the notation

ηij = diag{1,−1,−1,−1} , (6)

κi = κ{1,−1,−1,−1} , (7)

and ηij is the inverse matrix of ηij . Here κ can be

regarded as a measurement of LI violation. We con-

sider the head-on collision between a soft photon of

energy ε, momentum q and a high energy particle

m1 of energy E1, momentum p1, which leads to the

production of two particles m2, m3 with energies E2,

E3 and momentums p2, p3, respectively. By making

use of the energy and momentum conservation law

and the modified dispersion Eq. (5), we obtain the

deformed GZK threshold in Randers-Finsler space

Eth =
(m2 +m3)

2−m2
1

4(ε−κ/2)
. (8)

Taking roughly the energy of soft photon to be

10−3 eV, we give a plot for the dependence of the

threshold EN
th on the deformation parameter κ in

Fig. 1.

Fig. 1

We can see clearly that a tiny deformation of

spacetime (κ with the order of the CMBR) can pro-

vide sufficient correction to the primary predicted

threshold for the propagation of UHECR particles

through the CMBR[1]. If the nature of our universe is

Finslerian, more UHECR particles should be detected

than Greisen, Zatsepin and Kuzmin expected.

Another invariant speed in Randers-Finsler space

is expressed as[15]

C2 =
κ2−4m2

κ2 +4m2
. (9)

From the above discussion, we know that the defor-

mation parameter κ may be the same order as CMBR.

So far as we know, there is no observational evidence

for the existence of the second invariant speed C2.

Thus, we suppose that C2 is negative or C2 is beyond

the speed of light. The negative condition of the in-

variant speed C2 deduces that m > κ/2. This gives

particle mass a lower bound for a massive particle.
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The condition under which C2 is beyond the speed of

light deduces that the mass of the particle is negative.

In such a case, C2 may correspond to the speed of the

Goldstone boson.

3 Conclusion

Recently, there has been renewed interest in

experimental tests of LI and CPT symmetry.

Kostelecky[18] has tabulated experimental results for

LI and CPT violation in the minimal Standard-Model

Extension. Our result would not violate the minimal

Standard-Model Extension, since κ can be eliminated

by a redefinition of the energy and momentum. κ is

very small, the minor change in energy and momen-

tum can be neglected except for soft photon.

We would like to thank T. Chen, J. X. Lu, N. Wu,

M. L. Yan and Y. Yu for useful discussions. One of

us (X. Li) is indebted to W. Bietenholz for useful dis-

cussion on UHECR.
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