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On ηc line shape in charmonium transitions
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Abstract The line shapes to observe ηc in charmonium transitions, i.e., ψ(2S), J/ψ→γηc, are investigated.

The ηc line shapes in exclusive decays or by observing the inclusive photon spectrum are given. The sensitivities

to measure the ηc resonance parameters are also evaluated. With more than two thousand ηc events observed,

the precision of the ηc decay width measurement will be improved by better than 3%. However, the uncertainties

associated with the ηc modified line shapes will dominate the systematic errors and this will prohibit precision

mass and width measurements.
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1 Introduction

Charmonium decays and its spectrum have been

an ideal place for studying the strong interactions in

particle physics. In the past decades, much progress

has been made in the measurement of its spectrum

and decays. However, as the lightest charmonium

state, ηc is not well studied experimentally or the-

oretically. Although various ηc measurements are

available, the precise determination of its mass and

width is still an open problem. Up to now, there ex-

ist significant discrepancies between the various mea-

surements on the ηc mass and width. The measured

mass varies from 2969 MeV[1] to 2984.1 MeV[2], and

the width varies from 7.0 MeV to 28.0 MeV, and the

confidence level values of fitting to its mass and width

are quite small.

The magnetic dipole (M1) transition assumed in

the ψ(2S), J/ψ→γηc always overestimates the data

in various potential model calculations. Under the

nonrelativistic approximation, the M1 contribution to

the decay width is explicitly given by:
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Various potential model calculations based on the M1

transition show that the branching fraction is about

3%, which is twice as large as the experimental value

(1.27±0.36)%.

The hyperfine splitting between J/ψ and ηc has

also been the subject of many potential model and

lattice QCD calculations. In the potential model with

the nonrelativistic approximation, the mass splitting

is given by MJ/ψ−Mηc =
32παs(mq)

9mq

|Ψ(0)|2, where

Ψ(0) is the wavefunction at the origin. The reliable

way to estimate the mass splitting is the lattice QCD

calculation. The lattice QCD with quench approxi-

mation yields MJ/ψ−Mηc = 77 MeV, which is quite a

bit smaller than the experimental value 117 MeV[3].

To resolve these discrepancies between experi-

ments and theoretical calculations, it is desirable to

make a high precision measurement of the ηc mass

and width. In the previous measurements performed

with the processes of γγ fusion, pp collider, pp̄ anni-

hilation and charmonium transitions, the line shape

of the ηc is naively assumed to have the shape de-

scribed by the Breit-Wigner distribution. With the

large data sample accumulated at CLEOc, however,

it is found that the simple Breit-Wigner form can not

describe well the ηc line shape[4]. In this work, we

present some formulae to describe the ηc line shapes,

and they are intended for using it to study the ηc

transitions of J/ψ or ψ(2S) at BES0.
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2 General description of ηc line shape

2.1 Exclusive decays

Exclusive decays of ηc with large branching frac-

tions (about a few percent) can be used to recon-

struct ηc signals and to measure the resonance pa-

rameters. From PDG08[5], these channels, for exam-

ple, include ηc →η′(958)ππ, ηππ, ρρ, K∗(892)K−π++

c.c., KK̄π, K∗0K̄∗0π+π−, K+K−π+π−, 2(π+π−) and

3(π+π−). Some other two-body decays, though with

less branching fractions, can also be used due to the

high detection efficiency they have, such as ηc → pp̄,

ΛΛ̄, φφ and so on.

First, we consider the two-body decays of ηc, such

as:

ψ(2S), J/ψ(Pi, εi)→γ(p3, εγ)ηc(p12),

ηc →X1(p1, ε1)X2(p2, ε2), (2)

as shown in Fig. 1, where (p,ε) denote the vector

particle’s momentum and polarization vector. The

amplitude corresponding to the sequential decay is

written as:

M = MJ/ψ[ψ(2S)]→γηcBW(m12,M,Γ )×

Mηc→X1X2
F(m12), (3)

where BW(m12,M,Γ ) is the ηc Breit-Wigner with

resonance parameters M (mass) and Γ (width);

F(m12) is the form factor to account for ηc produc-

tion with the mass m12, whose form will be given later

on.

Fig. 1. To reconstruct ηc signals via two-body

decays in J/ψ or ψ(2S) radiative decays.

The standard partial decay rate is expressed by[5]:

dΓ

dm12

=
1

(2π)5
1

M 2
i

∫
Σ̄|M|2|p∗

1||p3|dΩ∗
1dΩ3 , (4)

where Σ̄ denotes taking a sum of the amplitude over

the total final state spins and averaging over the J/ψ

or ψ polarizations. Mi is the mass of J/ψ or ψ(2S),

and (|p∗|, Ω∗
1 ) is the momentum of particle X1 in

the rest frame of X1 and X2, and Ω3 is the angle of

the photon in the rest frame of J/ψ or ψ(2S). The

momenta magnitude of |p∗
1| and |p3| are given by

|p∗
1|=

√

[m2
12−(m1 +m2)2][m2

12−(m1−m2)2]

2m12
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M 2
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12

2Mi
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In what follows, we will construct the amplitudes for

J/ψ or ψ(2S)→γηc and ηc two-body decays using a

covariant amplitude method. From the consideration

of P -parity conservation, the amplitude for J/ψ or

ψ(2S)→γηc is written as:

MJ/ψ[ψ(2S)]→γηc =
g1

Mi

εαβµνp
α
3 εβ
γP

µ
i εν

i , (6)

where εγ and εi are the vectors of polarization for the

photon and J/ψ [ψ(2S)], respectively. The helicity

value of J/ψ or ψ(2S) is restricted to being λi =±1

due to their production from the e+e− beam. Simi-

larly, for ηc →VV (V = ρ, φ), one has:

Mηc→VV =
g2

m12

εαβµνp
α
1 εβ

1pµ
12ε

ν
2 , (7)

where p12 = p1 +p2. For convenience, this amplitude

can be calculated in the rest frame of ηc by replacing

p1 with p∗
1.

For ηc → BB̄ (B = p, Λ) decays, the amplitudes

are written as

Mηc→BB̄ = g3m12ū(p1,s1)γ5v(p2,s2) , (8)

where u(p1,s1) and v(p2,s2) are the Dirac spinors nor-

malized as u†u = −v†v = EB/mB for baryon and an-

tibaryon, respectively. g3 is a dimensionless coupling

constant.

Inserting Eqs. (6)—(8) into Eq. (3), and using

Eq. (4), one gets the mass distribution:

dΓ

dm12

(ηc → f) = |BW(m12,M,Γ )F(m12)|2×

T 2
f |p3|3|p∗

1|3 ; (9)

where f denotes the final states VV or BB̄, and

T 2
VV = (2m2+2mm12−m2

12)(2m2−2mm12−m2
12)(m

2
12−

M 2
i )2g1g2/(2Mim12)

2, and T 2
BB̄ = (Mi + m12)

2(Mi −
m12)

2m4
12g1g3/(8mM 2

i (m+E)), where m and E are

the mass and energy of vector mesons or baryons.

Eq. (9) shows that to describe the observed mass

distribution, besides the Breit-Wigner distribution,

one needs a form factor F(m12) to account for ηc

production and another factor Tf to account for the

ηc decay.

The multi-body decays are commonly believed

to proceed dominated by the quasi-two-body decays,

since the multi-body decays have less probability to
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create more quark pairs to form hadrons than two

body decays. In experiments, ηc decays into the

KKπ, K∗Kπ, ηππ, and η′(958)ππ have large branch-

ing fractions of about a few percent. However, no

indications about the two body decays are seen in

these channels due to the low statistics.

2.2 Inclusive decays

For the photon inclusive decays, the partial decay

rate reads

dΓ

dm12

∝ |BW(m12,M,Γ )F(m12)|2×
∫
Σ̄|MJ/ψ[ψ(2S)]→γηc |2|p∗

3
|dΩ3×

∑

n,λn

∫
|Mηc→Xn(λn)|2dΩn , (10)

where Mηc→Xn(λn) is the amplitude for ηc → Xn de-

cays with the n-body phase space dΩn. The sum runs

over all decay channels and spins of the final particle

states λn. Note that here we neglect the interference

effects between ηc decay channels, so that the sec-

ond integral can be approximately replaced by the ηc

decay width Γ . Hence one has

dΓ

dm12

∝ |BW(m12,M,Γ )F(m12)|2|p∗

3
|3Γ . (11)

In experiment, the inclusive photon spectrum is

also used to reconstruct the decay J/ψ, ψ(2S)→γηc.

The energy distribution of the transition photon is

expressed by:

dΓ

dEγ
∝ F(m̃12)ΓMi

(M 2
i −2MiEγ−m2

ηc
)2 +Γ 2m2

ηc

×

E3
γ

√

M 2
i −2MiEγ

, (12)

where m̃12 =
√

M 2
i −2MiEγ and Mi is the mass of

J/ψ or ψ(2S).

3 Form factor

3.1 Phenomenology

In studying resonance state production and de-

cays, the monopole/dipole form factors are always

used to account for the off-shell effects of the interme-

diate state[6]. For example, the monopole form factor

is used in studying ηc production from two-photon

collisions at LEP[7]. In the case of the M1 transition

of J/ψ→γηc, we take the phenomenological form as

F(m12) =











(

Λ2

Λ2 + |m2
12−m2

ηc
|

)n

exp(−|m2
12−m2

ηc
|/Λ2)

, (13)

conventionally, the first expression is called the

monopole (n = 1) or dipole (n = 2) form factor with

an energy cut-off parameter Λ, and the second one

is called the exponential form factor, which accounts

for the overlap of two charmonium wavefunctions as

arises in the lattice QCD calculations[8].

Fig. 2. The shapes of the form factor: (a) the dipole form factor with Λ = 3.0 GeV; (b) M1 transition for

ψ(2S)→γηc [see Eq. (16)]; (c) hadronic loop contributions.

3.2 M1 transition

If the M1 transition is assumed to dominate the

decay J/ψ[ψ(2S)]→ γηc, the decay width by a non-

relativistic calculation is given by Eq. (1). From this

equation, one gets the form factor as:

F(kγ)∝
∫∞

0

drr2Rn′0(r)Rn0(r)j0

(

kγr

2

)

, (14)

where kγ is the photon momentum. The small photon

momentum allows one to expand the spherical Bessel

function as:

j0

(

kγr

2

)

= 1− (kγr)
2

24
+ · · · . (15)

Note that for the orthogonality condition of the Rn,

to the leading order accuracy, one gets
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F(kγ)∝ km
γ , with m = 0 for J/ψ,

and m = 2 for ψ(2S). (16)

3.3 Hadronic loop contributions

The quark model predicts the branching frac-

tion for the M1 transition J/ψ → γηc to be 2.4—

2.9 keV, which is comparable with the measured value

1.85±0.17 keV[4]. However, for the hindered M1 tran-

sition ψ(2S)→γηc, the theoretical value ∼ 9.7 keV is

larger than the experimental value ∼ 0.88±0.13 keV.

Recently, the D-meson loop contribution to the M1

transition was investigated in Ref. [9]. It turns out

that the interfering between the D-meson loop and

the M1 transition naturally reproduces the experi-

mental values. For the transition J/ψ, ψ(2S)→γηc,

we define the amplitude with the form factor as:

Mfi =
1

Mi

F(m12)εαβµνp
α
3 εβ

3P µ
i εν

i , (17)

where the form factor F12 receives contributions from

the quark model prediction and the DD̄(D) loops with

three configurations, together with the interfering ef-

fects between them. A numerical calculation using

the loop integral expression in Ref. [9] is easily per-

formed to get the the form factor F(m12) as shown in

Fig. 2(c). We find it can be fitted with the following

polynomial in 2.5—3.1 GeV,

F(m12) = 1−0.82m12+0.31m2
12−0.04m3

12 . (18)

3.4 Sensitivity evaluation

We use the maximum likelihood to estimate the

experimental sensitivities. The joint likelihood is de-

fined by:

L=

N
∏

i=1

f(mi,α) =

N
∏

i=1

|M(mi,α)|2∫
dmi|M(mi,α)|2

, (19)

where f(mi,α) is the probability to observe the ith

event with the amplitude M(mi,α), and N is the

number of events observed, and α is the parameter in

question, e.g. ηc mass or width.

The sensitivity to measure the parameter α is de-

fined by:

δ(α) =

√

V (α)

α
, (20)

where V (α) is the variance of parameter α, which is

calculated by:

V −1(α) = N

∫
1

f(mi,α)

[

∂f(mi,α)

∂α

]2

dmi , (21)

where N is the total number of events.

If we use the non-relativistic Breit-Wigner to de-

scribe the ηc line-shape, i.e.

BW(m12,M,Γ ) =

√
Γ

m12−M − iΓ/2
, (22)

and the amplitude is taken as |M(m12,M,Γ )|2 =

|BW(m12,M,Γ )|2, then the sensitivity of measure-

ment with N events observed can be evaluated by:

δ(M)≡ σM

M
=

1√
2N

Γ

M
,

δ(Γ )≡ σΓ

Γ
=

√

2

N
.

(23)

If the mass and width of ηc are, respectively, taken

as M = 2.98 GeV and Γ = 0.0267 GeV[5], then the

sensitivity of mass and width measurement versus

the number of observed events are given in Fig. 3.

Over two thousand events are observed, the mass and

width sensitivity got are better than 0.02% and 3%,

respectively.

4 Discussion and summary

The line shape of the bare Breit-Wigner is signifi-

cantly modified by the form factors as shown in Fig. 4.

Since all form factors have the same behavior to sup-

press the ηc line shape on deviating from its nominal

mass point, the modified line shapes become thinner

than the bare Breit-Wigner form. This implies that

Fig. 3. The estimation of sensitivity for the ηc mass (a) and width (b) measurement.
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Fig. 4. The modified line shapes of ηc Breit-

Wigner ln[|BW(m12,M,Γ )F(m12)|
2] by vari-

ous form factors: (a) Bare Breit-Wigner with

(M,Γ )= (2.98,0.0267) GeV; (b) M1 transition

form factor for ψ(2S) → γηc [see Eq. (16)];

(c) hadronic loop form factor; (d) dipole form

factor with Λ = 3.0 GeV.

the modified line shapes are necessary to fit the ex-

perimental data for extracting the actual ηc decay

width. However, due to the uncertainties associated

with the form factors in theoretical aspect, the modi-

fied line shapes will result in large uncertainties in the

ηc measurement. For example, CLEOc reported that

the systematic uncertainty from the ηc modified line

shapes was about 7% in measuring Br[ψ(2S)→γηc],

which is larger than the statistic error (about 4%)[4].

To summarize, in this work ηc line shapes in

charmonium transition, i.e., ψ(2S), J/ψ→γηc, have

been investigated. In ηc exclusive decays, besides the

Breit-Wigner distribution, one needs a ηc birth factor

F(m12), together with a decay factor Tf to reproduce

the ηc line shape observed. The line shape by ob-

serving the inclusive photon spectrum is also given.

As for the ηc birth factor, we present several forms,

including the dipole or exponential phenomenological

form, M1 transition and hadronic loop contribution

forms. The sensitivities to measure the ηc resonance

parameters are also evaluated. With more than two

thousand ηc events observed, the precision of ηc de-

cay width will be improved by better than 3%. The

ηc modified line shape by the form factors has a sig-

nificant impact on the measurements of ηc resonance

parameters or the branching fraction. The uncer-

tainties associated with the line shapes will dominate

the systematic errors in the ηc measurement and this

will prohibit precision mass and width measurements.
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