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Renormalizability and nonrenormalizable interactions *
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Abstract Arguments are provided which show that extension of renormalizability in quantum field theory is

possible. By an appropriate choice of effective Lagrangian, a dressed Feynman propagator is obtained. In this

scheme, higher order Feynman diagrams become self-convergent and nonrenormalizable interactions become

renormalizable. As an example, the vacuum fluctuation effects on ρ meson mass for the vector-tensor coupling

model is discussed. It is found that the result can agree with the experimental value when coupling constant

is adjusted.
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1 Introduction

It is now generally believed that renormalizabil-

ity is not a fundamental requirement of quantum

field theory. In fact, the widely acknowledged ef-

fective field theory[1—3] contains nonrenormalizable

interactions. It has been especially emphasized by

Weinberg[1] that renormalizability is unnecessary for

the following main reasons: (1) it places a too strin-

gent restriction on the possible types of renormaliz-

able interactions and (2) as regards the cancellation of

ultraviolet divergences(UV), nonrenormalizable theo-

ries are actually also renormalizable, if all of the pos-

sible interactions allowed by symmetries are included

in the Lagrangian, because then there will be enough

counterterms to cancel every UV divergence. How-

ever, it is still desirable to find means to broaden the

extent of renormalizability, since for a renormalizable

interaction only a finite number of counterterms in

the Lagrangian is needed for the elimination of in-

finities, while an infinite number is necessary, if it is

a nonrenormalizable interaction. Hereafter we shall

always understand renormalizability in the above re-

strictive sense specified by “finite number”. We would

like to show that such an extension of renormalizabil-

ity is indeed possible if an effective Lagrangian were

chosen properly.

2 Theory

Consider the following Fermion Lagrangian den-

sity, for instance:

Lf =−ψN cosh[a(γµ ∂µ)2]γµ ∂µψ−ψMψ=

−ψ(γµ ∂µ +M)ψ−ψ(N cosh[a(γµ ∂µ)2]−1)×

γµ ∂µψ=L0
f +L′ (1)

where ψ is the fermion field, N a constant for normal-

ization and a a parameter far lesser than 1. Clearly,

compared to the free lagrangian density L0
f , Lf has

a remainder term L′, which may be considered as a

self-interaction part of the fermion field. The Dyson-

Schwinger equation for the fermion propagator G(k)

reads

G(k) =G0(k)+G0(k)Σ(k)G(k) (2)

where the superscript “0” indicates a zeroth order

approximation and G0(k) = −[γµkµ − iM ]−1, kµ ≡

(k, ik0). The fermion self-energy can be written as

Σ(k) = Σd(k)+Σr(k), where Σd(k) = (N cosh(ak2)−

1)γµkµ is the contribution of self-interaction La-

grangian L′, while Σr(k) is what contributed by

the interaction lagrangian LI . We may introduce a

dressed propagator Gd(k) and rewrite Eq.(2) in the
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form

Gd(k) =G0(k)+G0(k)Σd(k)Gd(k) =

− [N cosh(ak2)γµkµ− iM ]−1, (3)

G(k) =Gd(k)+Gd(k)Σr(k)G(k). (4)

Set N = [cosh(aM 2
N)+2aM 2

N sinh(aM 2
N)]−1 and M =

N cosh(aM 2
N)MN, where MN is the free nucleon mass.

It is seen that the pole of the dressed propagator

Gd(k) is γµkµ = iMN and the residue at the pole

equals to 1. Eq. (3) shows if a = 0, then Gd(k) =

G0(k); if a 6= 0, cosh(ak2) makes Gd(k) have multiple

poles in entire complex plane. However, in fact, there

is only a physical pole on the real axis and the others

will drive to infinity in complex plane as a decreases.

According to Eq. (4) it is not difficult to see that

a perturbation series can also be expanded in terms

of Gd(k) (dressed scheme, DS) instead of G0(k) (or-

dinary scheme, OS). Clearly, the same remark also

applies to boson propagators, a dressed boson prop-

agator ∆d(k) also may be introduced, i.e.

∆d(k) =−i[N2 cosh(bk2)k2 +m2− iε]−1. (5)

In the following, we shall consider the pseudovec-

tor π-N interaction (PVI) Lpv = ifψγµγ5τ · (∂µ φ)ψ

and the tensor ρ-N coupling interaction (TC) LρT =
fρ

4MN
ψΣµντ ·ψFµν , where Σµν = 1

2i
[γµγν − γνγµ] and

Fµν = ∂µ Aν − ∂ν Aµ. Following the argument given

in Ref. [1], one finds easily that the superficial degree

of divergence of Feynman diagram dF can be written

as

dF = 4−ΣκEκ(2−pκ)−Niri−N
′

i , (6-1)

ri = 4−1−Σκ2(2−pκ), (6-2)

where Eκ is the number of external lines of field κ,

Ni the number of vertices of interaction i in the Feyn-

man diagram andN ′

i the number of vertices which are

connected with external lines, where pκ denotes the

power of the propagator ∆κ(k) or G(k) of field κ, i.e.

∆κ(k)∼ k−2pκ . In OS, G0(k)∼ k−1 and ∆0(k)∼ k−2,

according to Eq.(6) rpv = rρT =−1, this says that dF

grows with Ni, thus as is wellknown, PVI and TC are

nonrenormalizable.

Now let us study DS. The one loop approximation

to the nucleon self-energy (see Fig.1(a))for PVI reads

Σ(k) = 3f 2

∫
d4q

(2π)4
γµqµγ5G(k−q)γνqνγ5∆π(q), (7)

while that to the ρ meson self-energy (see Fig.1(c))for

TC is given by

Πµν(k) =−

∫
d4q

(2π)4
Tr[ΓµG(q)Γ̃νG(k+q)], (8)

where Γµ = −
ifρkα

2MN

(γαγµ −δαµ)τi, Γ̃ν =
ifρkρ

2MN

(γργν −

δρν)τj. Substituting Eqs. (4) and (5) into Eq. (7) and

(8), one finds that both Σ(k) and Πρt(k) are con-

vergent. Note that not all of Feynman diagrams are

convergent in DS(for instance, tadpole diagrams(see

Fig. 1(b)), because there is only one propagator in-

volved in the Feynman integral, thus according to

the power of k2 to judge convergent character in the

Minkowski space is incredible). However, even in this

case, dF doesn’t grow with the number of vertices of

interaction. Thus, in the restrictive sense, extension

of renormalizability is realizable.

Fig. 1. Fermion self-energy (a), (b) and meson

self-energy (c).

Fig.2. effective mass of ρ meson vs density for

parameter a =0.005,0.01,0.02.

3 Example

Yeas ago, the experiments[4] of TAGX collabora-

tion have shown that, when the density of the nucleon

medium equals to 0.7ρ0, the mass of neutral ρ-meson

reduces to 610 MeV, where ρ0 is the saturation den-

sity. This is a quantitative result of the deduction of

ρ-meson mass in a dense medium. However, as was

shown by Refs. [5,6], the value of m∗

ρ
calulated by the

vacuum polarization diagrams of ρ-N vector-tensor

coupling interactions(VTC) increases with density in

conflict with the experiments qualitatively. To recon-

cile the discrepancy, Shiomi and Hatsuda[6] pointed

out that one must take the vacuum fluctuation ef-

fects into account. Now let us examine vacuum fluc-

tuation effects on the ρ-meson for VTC with inter-
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action LρVT = igρψγµτψAµ +LρT(see above). First

of all, we will calculate the self-energy of ρ meson in

medium under one loop approximation. As they are

long and space consuming, we only present the es-

sential steps here, which are necessary for our calcu-

lations. In dense medium the propagator of nucleon

reads

G(k) =2iπ(γµk
∗

µ +iM∗)δ[k∗2 +M∗2]θ(kF−|k|)−

γµk
∗

µ +iM∗

k∗2 +M∗2− iε
, (9)

where k∗

µ =N cosh(ak2)γµkµ,M
∗ =N cosh(aM∗

N
2)M∗

N

and M∗

N is the effective nucleon mass in medium. The

VTC vertices of interaction are

Γµ = [gργµ−
fρ

2MN

ikα(γαγµ−δαµ)]τi,

Γ̃ν = [gργν +
fρ

2MN

ikα(γαγν −δαν)]τj. (10)

Substituting Eqs. (9) and (10)into Eq. (8), it can be

calculated numerically. The effective mass of ρ meson

m∗

ρ
is defined as the pole of the propagator Dµν

ρ
(q) in

the limit q→ 0. We find

m∗

ρ

2 =
N2 cosh(βmρ

2)mρ
2 +iΠρ(q

2
0 =m2

ρ
,q→ 0)

N2 cosh(βm∗

ρ

2)
,

where Πρ(q) =
1

3
Πµµ(q)[7]. In the calculations, we

have chosen the parameters as MN = 939 MeV,

mρ = 768 MeV, β = 0.01 and N2 = [cosh(βm2
ρ
) +

βm2
ρ

sinh(βm2
ρ
)]−1, following the same reason as for

the determination of N . M ∗

N is adopted from the

Bonn potential model, which is more reasonable, be-

cause it takes account of more intermediate mesons,

especially the ρ meson. When we choose gρ = 2.72

and fρ = 3.7gρ for weak tensor coupling[8], we find

the self-energy of ρ meson is negative, which is pop-

ular. However, the absolute value is so large that

m∗

ρ

2 becomes negative too. The value being large

can be understood because the self-energy turns to

infinity when a → 0 and when a is small, the self-

energy becomes very large inevitably. In order to

fit experimental value m∗

ρ
/mρ = 0.8 for ρ/ρ0 = 0.7,

we need adjust gρ and fρ. For a equal to 0.005,

0.01, 0.02 respectively, gρ and fρ should decrease

34.48, 14.62, 4.42 times correspondingly. The result is

shown in Fig.2, where solid, dash and dot line refer to

a= 0.005,a= 0.01 and a= 0.02, respectively. We see

that effective mass of ρ meson decreases with density,

this is consistent with the result in Refs.[5,6,9].

In summary, even in the restrictive sense, exten-

sion of renormalizability is possible if an effective La-

grangian is chosen properly. our calculation of effec-

tive mass of ρ meson shows that the coupling con-

stant can be adjusted to obtain proper result in this

scheme.
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