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SLIM – a formalism for linear coupled systems *
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Abstract A SLIM formalism to deal with a general, linearly coupled accelerator lattice is summarized. Its

application to a wide range of accelerator calculations is emphasized.
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1 Introduction

Consider the linear optics of a circular accelerator.

Following the tradition of Courant and Snyder[1], we

analyze particle motion using transport matrices. We

first form a phase space state vector

Z=

[

x

x′

]

, (1)

where x is the coordinate and x′ is the momentum

of the particle. Particle motion from position 1 to

position 2 in the accelerator beamline is described

by a 2× 2 transport matrix M(1 → 2). To calcu-

late M(1→ 2), one multiplies the transport matrices

element by element from position 1 to position 2.

In this formalism, it is important to recognize that

all beam dynamics associated with linear optics are

contained in the transport matrices. In other words,

these matrices should give us everything we want to

know, and all physical results must be derivable from

them without having to seek additional inputs. Our

job is to analyze these transport matrices to extract

all the physics information they contain to the fullest

possible extent. Question, is how.

The way Courant-Snyder did it was to introduce

a set of “auxiliary functions” α(s),β(s),γ(s),ψ(s), as

well as the dispersion functions η(s),η′(s) to deal with

the off-momentum particles. The goal, of course, is

to calculate all the physical quantities associated with

the beam. By physical quantities, I mean quantities

associated directly to the beam’s measurable physical

properties, such as closed orbit distortion, momen-

tum compaction factor, betatron and synchrotron

tunes, x-y coupling coefficient, rms beam sizes, bunch

length, and energy spread, etc. Now note that this

long list does not contain the auxiliary functions

themselves. These functions play an auxiliary role

helping us to calculate the physical quantities, but

they themselves are not physical.

So, in the Courant-Snyder tradition, we have been

doing accelerator physics in three steps:

1) find the transport matrices M(1→ 2) by mul-

tiplying element matrices.

2) compute the auxiliary lattice functions α, β,

γ, ψ, η, η′, H (s), etc. using the transport matrices.

(Here for those familiar with electron storage ring op-

tics, I added another auxiliary function H (s).)

3) compute the beam’s physical properties using

the auxiliary lattice functions.

Again, step 1 contains all the physics. Step 2 contains

no physics but, for a 1-D uncoupled system, the set

of auxiliary functions provide sufficient flexibility to

allow all physical quantities to be calculated in step

3.

Not to question its monumental importance on

accelerator physics, however, the Courant-Snyder for-

malism is not without weakness. The main point is

that it applies only to 1-D uncoupled dynamics. For

example, βx and βy lose their meanings when x- and

y-motions are coupled, and η and η′ become obsolete

when the synchrotron tune becomes large, or near a

synchrobetatron resonance, etc. Trying to retrofit the

Courant-Snyder formalism to deal with these coupled

cases is often awkward if not impossible.
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To establish Step 3 above, we are accustomed to

use formulae explicitly involving the auxiliary func-

tions. Examples are easily foundavailable, as listed in

Ref. [2]. But these textbook formulae work only for

the 1-D uncoupled cases. In actual applications, we

often have to ask what replaces these formulae when

they break down? What if there is a skew quadrupole

in the storage ring? What if there is a crab cavity?

What happens if the tunes are near or even very close

to a resonance?

Facing this weakness, one begins to wonder if

there is another way to calculate the beam’s physi-

cal parameters directly from the transport matrices

(6×6 with general coupling) without resorting to the

auxiliary functions. After all, as mentioned, these

matrices contain all the information we need for the

arbitrarily coupled system under study.

Indeed it is an old topic to find ways to extend

the Courant-Snyder formalism, and many people have

tried it. One such early effort proposed in 1979-81[3, 4]

is reviewed here. There are also other efforts with a

similar goal. A set of examples (nonexhaustive) are

Refs. [5—11].

2 Courant-Snyder representation is

not a unique choice

Let me begin by illustrating that the Courant-

Snyder formalism is not unique. This is because by

illustrating that, I indirectly prove that the Courant-

Snyder representation, or at least a significant part of

it, can only be an artifact, and if there is a good rea-

son to, it can be replaced without loss of real contents.

In other words, we want to show that the Courant-

Snyder formalism is not sacred.

The basic representation that defines the Courant-

Snyder formalism is

x(s) =
√

εβ(s) sinψ(s), ψ(s) =

∫s ds′

β(s′)
, (2)

where ψ(s) is the betatron phase. The formalism is

based on an eigen-analysis (normal form analysis).

What one intends to do is to look for a coordinate

transformation from (x,x′) of Eq. (1) to (u,pu), in

such a way that the complicated dynamics of (x,x′)

in the accelerator lattice becomes simple uniform ro-

tation on a circle in the (u,pu) space. In fact, the

transformation from (x,x′) to (u,pu) is well-known,

[

u

pu

]

=







1√
β

0

α√
β

√
β







[

x

x′

]

=







x√
β

αx+βx′

√
β






. (3)

But there are actually an infinite number of ways

to parametrize a normal form transformation; Eq.

(3), chosen by Courant and Snyder, is just one of

them that is particularly elegant.

Investigating further, one then finds that, even for

the sake of elegance, the choice (3) is not unique. It

turns out that there exists another equally elegant

choice for normal form transformation:

[

ū

p̄u

]

=







√
γ

α√
γ

0
1√
γ







[

x

x′

]

=









γx+αx′

√
γ
x′

√
γ









. (4)

With this choice, particle motion in the (ū, p̄u) space

also follows a nice simple circle. In this case, instead

of Eq. (2), the basic transformation we introduce

looks like

x′(s) =
√

εγ(s) sin ψ̄(s), ψ̄(s) =

∫s K(s′)ds′

γ(s′)
, (5)

where now the betatron phase is given by ψ̄(s).

Fig. 1. Normalized coordinates in the Courant-

Snyder (left) and the alternative (right) con-

ventions.

Figure 1 shows a comparison between the nor-

malized coordinates in the familiar Courant-Snyder

and the alternative conventions. Fig. 2 shows the

Courant-Snyder functions for a FODO cell, as well as

the alternative betatron phase ψ̄(s). A short compar-

ison between the Courant-Snyder and the alternative

formalisms might be summarized in Table 1.

Table 1. Comparison between Courant-Snyder

and alternative formalisms.

emphasis
envelope

function

betatron

phase

Courant-Snyder x β(s) ψ(s)

alternative x′ γ(s) ψ̄(s)

From Fig. 2, one sees that the betatron phases

ψ and ψ̄ indeed look very different. For example,

ψ advances when the particle goes through a drift

space, while ψ̄ stands still in a drift space and ad-

vances only when going through a quadrupole. Also,

ψ always advances monotonically, while ψ̄ advances
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Fig. 2. The familiar Courant-Snyder functions β(s),α(s),γ(s) and ψ(s) for a FODO cell are shown in solid

line. The dashed curve gives the alternative betatron phase ψ̄(s).

going through a focusing quadrupole and goes back-

wards going through a defocusing quadrupole.

Had Courant-Snyder chosen (4) and (5) for their

classic paper, today we would be using a different ac-

celerator physics language. We would not recognize

many derivations in our present textbooks[2]. And

yet, both representations give identical results for all

physical quantities.

3 Replacing the auxiliary functions by

eigenvectors

At this point, it is natural to contemplate the pos-

sibility of replacing all the auxiliary lattice functions

by the eigenvectors of the transport matrices, like

this:

Conventional scheme:

Step 1

M(1→ 2)
→

Step 2

α,β,γ,ψ,

η,η′,H

→

Step 3

closed orbits,

beam sizes, etc.

using α,β,γ,ψ,

η,η′,H

Eigenvector (SLIM) scheme:

Step 1

M(1→ 2)
→ Step 2

eigenvectors
→

Step 3

closed orbits,

beam sizes,

etc. using

eigenvectors

Note that the set of all eigenvalues and eigenvec-

tors contains all the information contained in a trans-

port matrix (which is now 6×6 and generally coupled).

There is no loss (and of course also no gain) of infor-

mation by resorting to the eigen-analysis. The eigen-

vector scheme has the advantage that it deals readily

with the weakness of Courant-Snyder formalism men-

tioned earlier.

Incidentally I shall call this replacement scheme

the SLIM formalism, following the name of an early

computer code. Using this formalism, hopefully stor-

age ring design codes can become slimmer.

In the SLIM analysis, we aim for a single comput-

ing framework that covers a wide range of situations.

No assumptions are made on the 6×6 transport matri-

ces other than those imposed by fundamental physics

such as Liouville theorem (symplecticity). RF cav-

ities are considered longitudinal focusing elements,

just like quadrupoles are in the transverse motion. A

crab cavity acts as a y-z or x-z coupling element, just

like a skew quadrupole as an x-y coupling element.
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Synchrotron tune does not have to be small, and the

three orbital tunes can be near any combination of

linear resonances. Therefore, in SLIM, the following

cases are treated the same way on equal footing:

1) Betatron motion and synchrotron motion

2) Coupled case and uncoupled case

3) Near resonances and away from resonances

4) Spin motion and orbital motion

5) Orbital resonances and depolarization reso-

nances.

While applications cover a wide range, there is

only one straightforward framework of actual compu-

tation. The original SLIM program, when first writ-

ten, had only ∼1000 lines.

4 Calculating physical quantities us-

ing eigenvectors

I need to demonstrate how to calculate the phys-

ical quantities in SLIM. To do this, the state vector

first needs to be generalized to become 6-dimensional,

Z=

























x

x′

y

y′

z

δ

























. (6)

Given the linear optics of a storage ring, one first

calculates the 6×6 transport matrices M(s→ s+C)

for one turn around position s by multiplying element

matrices around the storage ring. Let me illustrate

the SLIM calculation of physical quantities by a few

examples.

Tunes

The six eigenvalues

e±i2πνk , k= .,/,0 , (7)

immediately give three tunes ν.,/,0. In the nomi-

nal case, they are the horizontal, vertical, and syn-

chrotron tunes. In case of an arbitrary coupled sys-

tem, they are the tunes of the three eigenmodes.

Each eigenmode also has a pair of eigenvectors.

The six eigenvectors are E.,/,0 and E∗
.,/,0. As men-

tioned, all beam dynamics contained in the transport

matrices are now contained in these eigenvalues and

eigenvectors. Our next job is then to construct all

remaining physical quantities out of these eigenvec-

tors, without resorting to other auxiliary lattice func-

tions. The Courant-Snyder β-function, for example,

does not need to be calculated.

Closed orbits

Once all the orbital perturbations are given in the

lattice, the closed orbit is calculated simply from the

condition that the resulting closed-orbit vector (6)

closes onto itself after one complete turn.

This result should not be taken too lightly. It

should be emphasized that what one finds here is an

orbit in the 6-D phase space. In the nominal uncou-

pled case, its 1-st and 3-rd components give the usual

∆x and ∆y. But it contains a lot more, such as x-y

coupled closed orbit, synchrobetatron coupled orbit,

orbits generated by localized RF cavities, the longi-

tudinal closed orbit ∆z, and the energy shift closed

orbit ∆δ. It also contains some hidden useful infor-

mation, such as the momentum compaction factor αc,

and the total synchrotron radiation energy loss U0,

both in the presence of general coupling. It is possi-

ble that some additional, more subtle effects have yet

to be explored further utilizing this flexibility.

Coupling effects

Once the closed orbit is obtained, sextupoles can

be included by linearizing them around the closed or-

bit.

Linear coupling and linear resonances, whether x-

y or synchrobetatron in nature, are treated on equal

footing. When we calculate the beam parameters,

these coupling effects are included automatically and

no approximations such as weak coupling are neces-

sary. The calculation is exact[12].

As one example, a crab cavity, an element not

readily treated by the conventional analysis, is a

straightforward application here. All one has to do

is to include these coupling elements in the transport

matrices. Subsequent calculations of physical quanti-

ties will then include their effects automatically.

Radiation damping times

Radiation damping originates from two effects.

One is that in a bending magnet, a particle with

higher (lower) energy will lose more (less) energy due

to synchrotron radiation. The other is that in an RF

cavity, the transverse momentum will be slightly re-

duced because the acceleration is purely longitudinal.

These effects are easily incorporated by slightly mod-

ifying the transport matrices of the bending magnets

and the RF cavities. Having done so, the six eigen-

values now become

e−αk ± i2πνk , k= .,/,0 , (8)

where the additional parameters α.,/,0 are the ra-

diation damping constants for the three eigenmodes.

The Orlov-Robinson-Tarasov sum rule is automati-

cally satisfied.
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In the nominal calculation using auxiliary func-

tions, the traditional way to calculate these constants

involve the calculation of the partition number D. It

then becomes a dubious venture how to extend that

calculation when the system is coupled or a resonance

is close by. The SLIM approach avoids the problem.

Equilibrium beam sizes in an electron storage ring

When a photon of energy u is emitted, the emit-

ting electron suffers a sudden quantum excitation on

its state vector,

∆Z =

























0

0

0

0

0

−u/E0

























. (9)

Once the eigenvectors Ek are known, this quantum

excitation can be decomposed into a linear sum of

these eigen-states,

∆Z =
∑

k=± .,/,0

ekEk,

ek = −i(u/E0)E
∗
k5. (10)

By balancing the quantum excitations of these eigen-

modes with their respective radiation damping, one

then obtains the three equilibrium eigen-emittances,

εk =
55

48
√

3

re~γ
5

mecαk

∮
ds

|Ek5(s)|2
|ρ(s)|3 . (11)

The second moments of the equilibrium beam distri-

bution are then given by

〈ZiZj〉= 2
∑

k=.,/,0

εk Re[EkiE
∗
kj]. (12)

In a linear system, the beam distribution is

strictly Gaussian, and the 21 quantities in (12) com-

pletely specify the equilibrium distribution, and con-

sequently the sizes and shapes, of the beam in the

6-D phase space. Perhaps one can compare the SLIM

result with the corresponding expression in a conven-

tional 1-D uncoupled theory here. The conventional

theory basically has an expression similar to Eq. (11)

but with H replacing the eigenvector |Ek5|2, and the

resulting expression gives the unperturbed horizontal

beam size 〈x2〉 for a 1-D uncoupled beam. In con-

trast, Eq. (11) gives the three eigenmode emittances

for a 3-D arbitrarily coupled beam, and subsequently

Eq.(12) gives the 21 beam distribution moments. The

eigenvector algorithm is obviously much more power-

ful in actual applications.

5 Adding spin dynamics

Once a generalization to 3-D dynamics is made,

one may take one step further. A proton or an elec-

tron has a 4-th dimension in its dynamics. In addition

to x-, y- and z-motions, it also has a dynamics involv-

ing its spin. By adding spin as its 4-th dimension,

and extending the eigen-analysis from 6-D to 8-D, the

SLIM formalism also calculates the spin properties of

the beam.

To do so, we consider the state vector, now 8-

dimensional,

Z=



































x

x′

y

y′

z

δ

α

β



































, (13)

where α and β are the two components describing

the deviation of the spin of a particle from its nomi-

nal (usually vertical, but does not have to) direction.

The transport matrices are now 8×8. In addition to

the three eigentunes in Eq. (7), there is now a 4-th

eigentune,

ν1 = spin precession tune. (14)

The reason that the SLIM formalism is particu-

larly suitable to deal with spin dynamics is the fact

that spin motion couples intimately, and in a rather

complicated manner, to the orbital dynamics, and

SLIM is particularly useful to deal with this spin-

orbital coupling because it simply treats spin motion

and orbital motions on an equal footing, and treats

coupled and non-coupled motions in one single frame-

work.

Table 2. Analogy between the mechanism for equilibrium beam emittances and mechanism for equilibrium

level of spin polarization.

diffusion ←→ damping beam property

orbital motion radiation damping ←→ quantum excitation emittances

spin motion radiative polarization ←→ spin diffusion polarization
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The equilibrium polarization of an electron beam

is therefore determined the same way as the equilib-

rium beam sizes are calculated. After an emission of

a synchrotron radiation photon, the state vector of

an electron suffers a sudden impact

∆Z =



































0

0

0

0

0

−u/E0

0

0



































. (15)

We then decompose this impact vector into a sum

over eight eigenvectors. The last two components,

projected to the two spin eigenvectors, represent the

quantum excitation of synchrotron radiation onto the

spin motion. By balancing this quantum spin dif-

fusion against radiative polarization, one then ob-

tains the equilibrium level of beam polarization in the

same way we obtain the equilibrium beam emittances

by balancing the quantum excitation again radiation

damping, as illustrated in Table 2.

6 Summary

In learning accelerator physics, there is no substi-

tute to first learn the elegant Courant-Snyder formal-

ism for the 1-D uncoupled case. In actual accelera-

tor applications, often one needs to deal with more

complicated 2-D and 3-D coupled cases. For those

applications, it is not a good idea to confine ourselves

to the Courant-Snyder formalism and try, for exam-

ple, to invent some “generalized β-functions”. In-

stead, one should utilize eigen-analysis of the trans-

port matrices. In doing so, one can deal with cou-

pled multi-dimensional cases readily, including the 4-

D cases when spin dynamics are included, in a rather

straightforward manner.
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