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Lie algebraic analysis and simulation of high-current

pulsed beam transport in a solenoidal lens *
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Abstract Recent calculations of the transport of a high-current beam in a solenoidal lens have made progress

to the second order with the Lie algebraic method. A review of the theory and our simulation to realize it will

be described. Then we will present the results of simulation. A brief discussion on the space charge effect’s

contribution to the transportation will also be made.
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1 Introduction

Nonlinearity in particle orbit dynamics plays an

important role in affecting the computing precision

of particle trajectories and thus the accelerator de-

sign. A variety of methods are used for the purpose

to calculate it reasonably and effectively. The Lie al-

gebraic method, whose validity has been testified by

a comprehensive study and application, because of its

concision in dealing with nonlinear effects, has been

a method for particle tracing and accelerator design

for decades.

Solenoidal lenses are focusing elements frequently

used in induction accelerators, linear electron accel-

erators, linear proton accelerators, beam transport

system at low energy and a variety of cathode-ray

tubes. Sometimes the beam current is too high for

the space charge effect to be neglected. In this pa-

per, we use the Lie algebraic method to calculate the

nonlinear transport of a beam considering the space

charge effect. Mapping expressions to the second

order are derived. For plainness and clarity, we also

give the simulation results by a program developed

on our own, my Beam Orbit Code (my BOC), a pro-

gram designed for simulation of high-current pulsed

beam transport in transporting elements including

solenoidal lenses.

2 Lie map and factorization

The main idea of the Lie algebraic method is that

the Lie transformation associated with an analytic

function produces an analytic symplectic map and

that conversely, under certain general conditions, an

analytic symplectic map can be written as a product

of Lie transformations [1]. When a particle is trans-

ported through a beam transporting system, its final

coordinates are determined by its initial coordinates

and the Hamiltonian of the system within the course.

The total of trajectories of particles with all possi-

ble initial conditions together is called the Hamilto-

nian flow. A map following the Hamiltonian flow is

a symplectic map. Let us treat the problem from

the point of view of the Lie algebraic. Write the fi-

nal coordinates as a map acting on the initial ones

ξ =M(ξ0). The map can be expressed as a product

of a series of Lie transformations. Our job is to find

these Lie transformations and act them on the initial

coordinates. Then we will be able to derive the fi-

nal coordinates. We can see that with the aid of the

Lie algebraic method and tools, the problem can be

solved concisely.

For a Hamiltonian system, the mapping can be ex-

pressed by M = exp(:−

∫z

z0

Hdz :). The double colon
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along with the function between them denotes a Lie

operator. When acting on any function g it will take

the Poisson brackets operation

: f : g= [f,g] =
∑

i

(∂f/∂qi)(∂g/∂pi)−

(∂f/∂pi)(∂g/∂qi).

Assume that H has been expanded as a power se-

ries. Insert the expansion of H into the expression

above and suppose that the result is written in fac-

tored product form; we can write the map as

M = exp

(

−

∫z

0

(:H2 : + :H3 : + · · · )dz

)

=

· · ·exp(: f3 :)exp(: f2 :),

where f2 and f3 are calculated by [2]

f2 =−

∫ z

z0

H2dz, f3 =−

∫ z

z0

H int
3 dz,

with

:H int
3 :=M2 :H3 :M−1

2 =:M2H3 : .

According to the property of the Lie operator, we

have

H int
3 (ξ) =H3(M2(ξ)) =H3(ξ1).

The linear part ξ1 and the second order ξ2 of the par-

ticle’s final coordinates can be obtained by carrying

out the calculation of

ξ1 = exp(: f2 :)ξ and ξ2 =: f3 : ξ1.

3 Hamiltonian and expansion

In Cartesian coordinates, for the motion of a

charged particle in the solenoidal lens, the relativis-

tic Hamiltonian with the axis z as an independent

variable has the following form [3],

K=−qAz−

1

c
×

√

−m2
0c4−c2((px−qAx)2 +(py −qAy)2)+(pt +qψs)2 .

(1)

Here A is the magnetic potential vector with

Ax
∼= (−B/2) ·y the linear approximation of the hor-

izontal projection, Ay
∼= (B/2) · x that of the verti-

cal projection, and Az = 0 that of the longitudinal

projection. In the function above, B =B(0)(z) is the

magnetic induction intensity excited by the solenoidal

lens along the z axis. Ψs is the self-electric potential

that the particle suffered from the beam; for a beam

observing the uniform distribution, Ψs is described by

Ψs =−U(µxx
2 +µyy

2 +µzz
2
r), where U is a parameter

defined as U = 3ITrf/(8πε0γ0DxDyDz). In the func-

tion above, I is the average beam current, Trf is the

period of the beam pulses, Dx, Dy and Dz are the

beam dimensions, zr is the relative longitudinal po-

sition of the particle to the reference particle and is

expressed as zr = z−v0t, with v0 representing the ve-

locity of reference particle. γ0 is the beam relativistic

energy and γ0 = 1/
√

1−β2
0 with β0 = v0/c, the beam

velocity normalized by the speed of light. µx, µy, µz

are factors dependent on the beam dimensions,

µx =
DxDyDzγ0

2
×

∫
∞

0

1

(D2
x +ξ)

√

(D2
x +ξ)(D2

y +ξ)(D2
zγ

2
0 +ξ)

dξ,

µy =
DxDyDzγ0

2
×

∫
∞

0

1

(D2
y +ξ)

√

(D2
x +ξ)(D2

y +ξ)(D2
zγ

2
0 +ξ)

dξ,

µz =
DxDyDzγ0

2
×

∫
∞

0

1

(D2
zγ

2
0 +ξ)

√

(D2
x +ξ)(D2

y +ξ)(D2
zγ

2
0 +ξ)

dξ.

With the original variables, following the Hamilto-

nian flow generated by K along the design orbit does

not lead to an analytical map. For convenience, one

can transform the variables by the canonical trans-

formation arising from the function

F2 =xpx +ypy +(t−z/v0)(pτ +p0
t )

and define the “new” variables (τ , x, y, pτ , px, py)

with τ = t − z/v0 and pτ = pt − p0
t . In terms of

these new variables, the design orbit is expressed as

τ = x = y = pτ = px = py = 0, which suggests that

following the Hamiltonian flow generated by Hamil-

tonian in terms of the new variables along the design

orbit does lead to an analytical map. The variables

τ , x, y, and their canonical momenta are measured

as deviation from the design orbit. Let H denote the

Hamiltonian for the new variables. According to the

relation H =K+∂F2/∂z, we have the result,

H =−

pτ +p0
t

cβ0

−

1

c

√

−m2
0c4−c2

((

px +
qBy

2

)2

+

(

py −

qBx

2

)2)

+(pτ +p0
t +qψs)2 . (2)
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We expand the Hamiltonian H into Taylor series.

Here we enumerate the first few polynomials,

H0 = p0

(

−1+
1

β2
0

)

,

H1 = 0,

H2 =
p2

x

2p0

+
p2

y

2p0

−k2
xx

2 p0

2
−k2

yy
2 p0

2
−kxpy +kpxy+

p2
τ

2p0γ2
0β

2
0c2

−k2
ττ

2 p0γ
2
0β

2
0c

2

2
,

H3 =
p2

xpτ

2p2
0β0c

+
p2

ypτ

2p2
0β0c

+x2pτ

β0

2c

(

k2
−

k2
x

γ2
0β

2
0

)

+

y2pτ

β0

2c

(

k2
−

k2
y

γ2
0β

2
0

)

+
p3

τ

2p2
0γ

2
0β

3
0c3

−k2
ττ

2pτ

β0c

2

(3)

where p0 = γ0m0β0c is the magnitude of the design

relativistic mechanical momentum. The parameters

k, kx, ky, and kτ are defined by k= qB/(2p0), and

k2
x =

2qUµx

p0β0c
−k2, k2

y =
2qUµy

p0β0c
−k2, k2

τ =
2qUµz

p0γ2
0β0c

.

4 Simulation

For the existence of the terms associated with

the space charge effect, the expressions of the par-

ticle’s final coordinates have the form of a power se-

ries which is too complicated for us to list them in

this paper. However, simulation can help us to make

a more explicit statement of the result. At present,

we are in the process of developing a particle tracing

code, named my BOC, making use of the results from

Lie algebraic analysis of transport elements including

solenoidal lenses. In this section, we will illustrate a

few of the characteristics of the nonlinear transport

of a high-current beam in the solenoidal lens using

some of the outcomes of my BOC.

Let the particles be transported in the z direc-

tion. The transporting system is constructed with

three drift spaces, of which two are 20 cm long and

one 40 cm long, and two 15 cm long solenoidal lenses

with a central magnetic field of 0.4 T and 0.6 T re-

spectively, arranged alternately along the axis. The

inner radius of the tube is 5 cm.

Consider a 50 mA, 5 MeV proton beam. Suppose

that the beam has a uniform distribution. Then with

the initial emittance εx = εy = 75.0 mm·mrad, εz =

0.04◦
·MeV, the Twiss parameter αx =αy = 0.2, αz =

1.0, βx = βy = 3.0 mm/mrad, βz = 160000.0◦/MeV,

the beam transport is calculated. Here the emittance

and the Twiss parameters are important parameters

which reveal a lot of information about the beam

property. The emittance ε is associated with the area

of the phase elliptic. β is the envelope function of the

transverse movement. α tells the slope of the beam

envelope [4].

The particle trajectory is calculated by the func-

tion of single particle tracing. We calculated respec-

tively the trajectories of four typical particles whose

initial trajectories are parallel to the axis with an off-

set from the axis in the x direction. To have an overall

view of the particles’ behavior, we plotted the trajec-

tories in both the x and y directions in one figure

(see Fig. 1). As is expected, the total effect of a set

of drift spaces and solenoidal lenses arranged alter-

nately is to minimize the beam profile. Note that the

previous calculations are on the hypothesis that the

particles are transported through the system one by

one, without suffering from the space charge effect.

Fig. 1. Transverse trajectories. The initial

coordinates of the particles are (0,0,0,0,0,0),

(3,0,0,0,0,0), (8,0,0,0,0,0) and (15,0,0,0,0,0),

as shown with the solid line, the dotted line,

the dash-dotted line and the dashed line.

Fig. 2. Beam envelope.

Figure 2 shows space charge effect on the beam

envelope. 10000 particles generated randomly within

the distribution restriction are traced. As we can see

from the figure, the space charge effect will accumu-

late as time goes on. Thus in long distance transport,

the beam may deteriorate largely and the efficiency of

the transporting system becomes lower. To conquer

this problem, neutralization transport is one option.
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Fig. 3. Particle distribution in 6-dimension

phase space. (a) εx =75 mm·mrad, αx =0.07,

βx =3.3 mm/mrad; (b) εy =75 mm·mrad,

αy =0.07, βy =3.3 mm/mrad; (c) εz =0.04◦

MeV, αz =−2.0, βz =190000◦/MeV.

In the following, all the calculations are with space

charge effect considered.

Nonlinear effects are also studied. Under a des-

ignated initial condition, we get a linear approxima-

tion of the beam envelope with the transfer matrix

method and a nonlinear one with the multi-particle

tracing method. The envelopes calculated with the

two methods are almost the same. That is, the non-

linear effects in this transporting system are almost

imperceptible.

Making use of the data calculated with the multi-

particle tracing method (10000 particles included),

we plotted the distribution of particles in the phase

space at the exit of the transporting system, as shown

in Fig. 3. The beam emittance ε, together with the

Twiss parameters α and β, are also calculated and

listed under the figure.

We can see from (a) and (b) that the phase el-

lipses in the two interceptive directions are the same

within the calculation error, which is consistent with

the uniform distribution assumption.

5 Conclusion

We have reviewed the main idea of the Lie alge-

braic applied to beam transport. Coordinate map-

ping formulae to the second order of high-current

beam transport in a solenoidal lens have been de-

rived. Programs are designed and a simulation has

been done. We note that the space charge effect is

one of the primary contributors to impairment of the

quality of the beam. With the space charge effect

considered, the simulation precision can be greatly

improved.
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