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Particle-number-conserving analysis of
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Abstract The experimental one-, three-, and five-quasiparticle bands in 177Lu are analyzed by the particle-

number conserving (PNC) method for treating the cranked shell model with pairing interaction, in which the

blocking effects are taken into account exactly. The experimental moments of inertia are reproduced very well

by PNC calculations with us free parameter.

Key words multiquasiparticle band, blocking effect, moment of inertia, particle-number-conserving method

PACS 21.60.-n, 21.60.Cs, 23.20.Lv, 27.70.+q

1 Introduction

It has long been established that the reduc-

tion of the experimental nuclear moment of inertia

(MOI) of the ground-state band (gsb) of an even-

even well-deformed nucleus compared with the rigid-

body value is a consequence of nuclear pairing in-

teraction [1]. Moreover, the experimental MOIs of

one-quasiparticle (qp) bands in odd-A nuclei are sys-

tematically larger than those of the gsb’s of adjacent

even-even nuclei [2]. Usually, the odd-even differ-

ences in MOIs are attributed to the presence of an

odd particle (Pauli blocking effect), which leads to a

reduction of the pairing gap parameter ∆, and hence

the rotational parameter (A = ~
2/2J). As a rough

estimation, a reduction of ∆2 by half will cause a

15% increase in MOI [2]. However, the experimen-

tal odd-even differences in MOIs show large fluctua-

tions [2, 3]. Assuming ∆0 is the gap parameter for

the gsb of an even-even nucleus, and ∆ν is that for

a 1-qp band of an odd-A neighboring nucleus with

the Nilsson level ν being blocked by an unpaired nu-

cleon, it is shown that the pairing reduction of gap

parameter, δ∆ν = ∆0 −∆ν , depends sensitively on

the single-particle level spacing near the Fermi sur-

face and the distance of the blocked Nilsson orbital

ν to the Fermi surface [4]. However, as Rowe em-

phasized [5], while the blocking effects are straight-

forward, it is very difficult to treat them in the usual

BCS (Bardeen-Cooper-Schriffer) formalism, because

it introduces different quasiparticle bases for differ-

ent blocked levels.

In recent years, a lot of low-lying excited rota-

tional bands with intrinsic multi-quasiparticle states

have been observed [6–9]. For the well-deformed

rare-earth nuclei with A ∼ 180 (Z ∼ 71 – 74,

N ∼ 98 – 108), the single-particle spectrum is dom-

inated by high-Ω (projection of angular momen-

tum along the symmetry axis) orbitals near the

Fermi surface (see Fig. 1), e.g., the proton orbitals

7/2−[523] (boldface denotes the high-j intruder or-

bitals), 7/2+[404], 9/2−[514], 5/2+[402], and the

neutron orbitals 5/2+[642], 5/2−[523], 7/2+[633],

5/2−[512], 7/2−[514], 9/2+[624], etc. This special

situation gives rise to low-lying excited high-K multi-

quasiparticle bands.

It is well known that, besides the space reflection

symmetry, the well-deformed rare-earth nuclei also

exhibit axial symmetry (rotation around the symme-

try z axis) and symmetry of rotation of π around the

x axis, Rx(π) = e−iπJx [2]. Thus, the projection of nu-

clear total angular momentum along the symmetry
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axis, K =
∑

i
Ωi, is a good quantum number. For

an even-even nucleus, Rx(π)2 = 1, the eigenvalue of

Rx(π), signature r = e−iπα = ±1 or equivalently, the

signature exponent α = 0,1. For an odd-A nucleus,

Rx(π)2 =−1, r =±i and α=±1/2. For the ground-

state band of an even-even nucleus, all the nucleons

are paired up due to strong pairing interaction, parity

π = +, α= 0, I = 0, 2, 4, · · · . For an odd-A nucleus,

where the Nilsson orbital 1 is blocked by an unpaired

nucleon, we have two sequences of rotational levels

with π = π1, K = Ω1, I > K, α = ±1/2. For a

3-quasiparticle band in an odd-A nucleus, when the

Nilsson orbitals 1, 2 and 3 are blocked by unpaired

nucleons, we have eight sequences with π = π1π2π3,

K= |Ω1±Ω2±Ω3|, I >K, α=±1/2. For the high-K

3-qp band, K = |Ω1 +Ω2 +Ω3|, α=±1/2.

In this article the experimental 1-qp, 3-qp and

5-qp bands in 177Lu [7–9] are analyzed using the par-

ticle number conserving (PNC) method for treating

the cranked shell model (CSM) with pairing interac-

tion, in which the blocking effects are exactly taken

into account. Details of the PNC formalism for treat-

ing the eigenvalue problem of the CSM Hamiltonian

are given in [10, 11]. For convenience, the main

formulation used in the present calculation is pre-

sented in Sect. 2. The PNC analysis for the low-

lying multi-quasiparticle bands in 177Lu, including

the MOIs, bandhead energies and occupation prob-

abilities of each cranked Nilsson orbital, are given in

Sect. 3. Sect. 4 gives a brief summary.

2 A brief review of the PNC method

for the CSM with pairing interac-

tion

The CSM Hamiltonian of an axially symmetric

nucleus in the rotating frame is [10, 11]

HCSM = H0 +HP ,

H0 = HNil−ωJx, (1)

H0 =HNil−ωJx is the one-body part of HCSM, where

HNil is the Nilsson Hamiltonian, −ωJx is the Corio-

lis interaction with cranking frequency ω about the x

axis (perpendicular to the nuclear symmetry z axis).

HP is the pairing interaction

HP =−G
∑

ξη

a+
ξ a

+
ξ̄
aη̄aη, (2)

where ξ̄ (η̄) labels the time-reversal state of the Nils-

son state ξ (η), and G is the effective strength of

pairing interaction, which is determined by the ex-

perimental odd-even difference in binding energies,

and it is not a free parameter.

The key point of the PNC method is that a

cranked many-particle configuration (CMPC) trun-

cation (Fock space truncation) is used instead of

the single-particle level (SPL) truncation in common

shell-model calculations. This is crucial to make the

PNC calculations for low-lying excited states both

workable and sufficiently accurate [12, 13]. The sta-

bility of the calculations using the Fock space trun-

cation has been investigated in detail by the Dudek

group [13].

Assume that an eigenstate of HCSM is

|ψ〉=
∑

i

Ci|i〉 (Ci real), (3)

where |i〉 is a CMPC (an eigenstate of the one-body

operator H0). In the following calculations, the CSM

Hamiltonian (1) is diagonized in a sufficiently large

CMPC space to obtain the solutions to low-lying ex-

cited eigenstates of HCSM. The dimension of the

CMPC space is about 700 for proton and 800 for

neutron. As we are only interested in the yrast and

low-lying excited states, the number of important

CMPC’s involved (weight > 1%) is very limited (usu-

ally < 20) and almost all the CMPC’s with weight

> 0.1% are taken into account, so the solutions to the

low-lying excited states are accurate enough.

The angular momentum alignment of |ψ〉 is

〈ψ|Jx|ψ〉=
∑

i

C2
i 〈i|Jx|i〉+2

∑

i<j

CiCj〈i|Jx|j〉, (4)

and the kinematic moment of inertia for state |ψ〉 is

J (1) =
1

ω
〈ψ|Jx|ψ〉. (5)

The occupation probability nµ of the cranked orbital

µ is nµ =
∑

i
|Ci|

2Piµ, where Piµ = 1 if µ is occupied

in |i〉, and Piµ = 0 otherwise.

Two points should be noted:

(a) Besides the parity π, the eigenvalue of Rx(π),

i.e., the signature r= e−iπα, or the signature exponent

α is believed to be a good quantum number. Since

Rx(π) = e−iπJx , [Jx,Jz] 6= 0, the signature scheme

breaks the validity of K quantum number. Consi-

dering [Jx,J
2
z ] = 0, we can construct the simultane-

ous eigenstates of (Rx(π),J2
z ). In fact, in the PNC

calculations, each |i〉 in (3) is chosen as a simultane-

ous eigenstate of (H0,J
2
z ). Walker and Draculis [6]

pointed out that some forms of K-mixing must ex-

ist to enable the K-forbidden transition observed in

a lot of low-lying rotational bands of axially symmet-

ric nuclei. However, by convention, K is still used as

a convenient quantum number to describe rotational

bands of deformed spheroidal nuclei, but it should



No. 1 ZHANG Zhen-Hua et al: Particle-number-conserving analysis of multiquasiparticle bands in 177Lu 41

be kept in mind that the K structure of a rotational

band may change with ω.

(b) In the PNC treatment for the CSM with

Hamiltonian (1), the seniority (number of unpaired

particles) is not a good quantum number either, due

to the appearance of the antipairing Coriolis interac-

tion. Moreover, though the total number of particles

n (=
∑

µ
nµ) stays exactly constant, the occupation

probability nµ for each orbital µ may change with

increasing rotational frequency ω.

3 Analysis of low-lying rotational

bands in 177Lu

3.1 The cranked Nilsson orbitals near the

Fermi surface of 177Lu

The Lund systematics of the Nilsson level scheme

[14, 15] has been very successful for predicting the

ground-state spins of well-deformed odd-A nuclei,

particularly for the well deformed rare-earth (150 <

A < 190) and actinide (A > 225) nuclei. However,

deviation of the experimental bandhead energies of

1-qp bands in some rare-earth nuclei from the Lund

systematics was found, e.g., see Ref. [16]. To give

a reliable calculation for multiquasiparticle bands, it

is necessary to adopt a more realistic single particle

scheme. The Nilsson level scheme (Lund systematics)

for protons and neutrons is adjusted to reproduce the

bandhead of energies of the low-lying 1-qp bands in
177Lu and 177Hf respectively. The slightly adjusted

Nilsson level scheme for 177Lu is shown in Fig. 1. The

deformation ε2 = 0.257, ε4 = 0.057 are taken from the

Lund systematics [14] and no change is made, but a

slight change in Nilsson parameters κ and µ is made

(see the caption of Fig. 1).

Fig. 1. The cranked Nilsson orbitals near the Fermi surface of 177Lu. The deformation parameters (ε2, ε4)

are taken from the Lund systematics [14], (ε2, ε4)=(0.257, 0.057). The Nilsson parameters κ and µ (Lund

systematics [15]) are slightly adjusted to reproduce the bandhead energies of the low-lying 1-qp bands of
177Lu (see Fig. 2). (a) For proton, κ4 = 0.061 (N = 4 major shell), κ5 = 0.060 (N = 5 major shell),

µ4 = 0.609, µ5 = 0.609. In addition, the Nilsson level 1/2+[411] is slightly shifted upward by 0.023~ω0,

7/2+[404] is slightly shifted upward by 0.015~ω0. (b) For neutron, κ5 = 0.0677, κ6 = 0.0636, µ5 = 0.432,

µ6 = 0.370, and 1/2−[510] is shifted downward by 0.070~ω0, 7/2+[633] is shifted downward by 0.010~ω0,

9/2+[624] is shifted upward by 0.060~ω0.

Using Fig. 1(a), the bandhead energies and MOIs

of the low-lying excited 1-quasiproton bands in 177Lu

[8] are well reproduced (see Figs. 2). Similarly,

the experimental bandhead energies of low-lying 1-

quasineutron bands in 177Hf [17] are reproduced by

Fig. 1(b). The simple shell model calculation (pair-

ing interaction neglected) for the bandhead energies

of four low-lying excited 1-qp bands of 177Lu by the

modified proton Nilsson level scheme (Fig. 1(a)) is

shown in Fig. 2(a). The PNC calculated bandhead
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energies with the pairing interaction involved are

shown in Fig. 2(b), and are very close to the exper-

imental results (Fig. 2(c)). The effective pairing in-

teraction strength is determined by the experimental

odd-even differences, Gp = 0.32 MeV, Gn = 0.30 MeV.

Fig. 2. The bandhead energies of the low-lying

1-quasiproton bands of 177Lu. (a) The shell

model calculation of the bandhead energies us-

ing the Nilsson level scheme given in Fig. 1.

(b) The PNC calculation for the bandhead

energies. The proton effective pairing inter-

action strength Gp is determined by the ex-

perimental odd-even difference in binding en-

ergies, Gp = 0.32 MeV. (c) The experimental

results.

3.2 The MOIs of 1-qp bands in 177Lu

The experimental J (1)’s and the occupation prob-

abilities of low-lying 1-qp bands of 177Lu [8] are shown

in Fig. 3, by � (α = 1/2) and � (α = −1/2) re-

spectively. The experimental J (1) of the reference

band (Kπ = 0+, gsb of 176Yb, denoted by •) is

also presented. The PNC calculated J (1)’s for all

the low-lying 1-quasiproton bands are shown by solid

(α = 1/2) and dotted (α = −1/2) lines, respectively.

The experimental J (1)(ω)’s are reproduced very well

PNC calculations with no free parameter, which in

turn confirms the assigned configurations for 1-qp

bands in 177Lu [8, 9].

Discussions:

(a) Signature splitting.

For the former three bands, Kπ = 7/2+ (the gsb),

Kπ = 9/2− at 150.9 keV, andKπ = 5/2+ at 457.9 keV,

no signature splitting is observed, which is in accor-

dance with the behavior of the cranked Nilsson levels

π7/2+[404], π9/2−[514] and π5/2+[402] (Fig. 1(a)).

For the π1/2+[411] at 569.7 keV and π1/2−[541]

band, the observed signature splitting is well repro-

duced by the PNC calculations, which is understand-

able from the behavior of the cranked Nilsson orbital

π1/2+[411] and π1/2−[541](Fig. 1(a)). As for the

Kπ = 1/2− band (π1/2−[541]), a slightly larger de-

formation parameter ε2 = 0.271 is adopted according

to Ref. [9].

(b) The so-called “identical bands”.

From Fig. 3 it is seen that the experimental

J (1)’s for two low-lying excited bands of 177Lu [8],

Kπ = 7/2+ (gsb) and Kπ = 5/2+ band at 457.9 keV,

are “identical” to the reference band (Kπ = 0+,

gsb of 176Yb) [18], i.e., the odd-even difference in

MOIs vanishes, δJλ ≈ 0. This seemingly strange

behavior is reproduced very well by the PNC cal-

culations with no free parameter. This can be eas-

ily understood, because for the two 1-qp bands, the

blocked Nilsson levels are deformation aligned nor-

mal orbitals (π7/2+[404], π5/2+[402]) with a negli-

gibly small Coriolis response. As for the 1-qp band

Kπ = 9/2− at 150.9 keV, both the experimental and

calculated J (1) (π9/2−[514]) are a little larger than

the reference band. This can also be understood, be-

cause even π9/2−[514] is a high-j intruder orbital,

but it has a high-Ω value (i.e., deformation aligned).

The MOI of the π1/2−[541] band (α = 1/2) is

much larger than the reference band at low ω; this

is also understandable, because the blocked orbital

π1/2−[541] (h9/2) is of a high-j low-Ω, and has a

very strong Coriolis response.

3.3 The 3- and 5-qp bands in 177Lu

The experimental J (1)’s of two low-lying excited

high-K 3-qp and one 5-qp bands of 177Lu [9] are

shown in Fig. 4 by � (α = 1/2) and � (α = −1/2),

and the calculated J (1)’s are shown by solid (α= 1/2)

and dotted (α= −1/2) lines, respectively. No signa-

ture splitting is found. The experimental J (1) of the

reference band (Kπ = 0+, α = 0, gsb of 176Yb, de-

noted by •) is also presented. The occupation prob-

abilities for these bands are given in the right side

of Fig. 4. The experimental J (1)(ω)’s of these bands

are reproduced very well by the PNC calculations, in

which no free parameters are involved. The difference

between two high-K 3-qp bands is that the blocked

normal proton orbital π7/2+[404] in the Kπ = 23/2
−

band is replaced by the high-j, but high-Ω (deforma-

tion aligned) orbital π9/2−[514] in the Kπ = 25/2
+

band. This can also be seen from the proton occupa-

tion probabilities nµ of each Nilsson level. Thus we

can understand why J (1)(Kπ = 25/2
+
) is a little larger

than J (1)(Kπ = 23/2
−

), and in turn J (1)(Kπ = 23/2
−

)
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is a little larger than J (1)(Kπ = 0+, α = 0, gsb of
176Yb). For the two high-K 3-qp bands of 177Lu, the

neutron occupation probabilities of each Nilsson level

are the same.

Fig. 3. The MOIs and the occupation probabilities of the low-lying 1-qp bands in 177Lu. The experimental

MOIs are denoted by � (α =1/2) and � (α =−1/2), respectively. The calculated MOIs by the PNC method

are denoted by solid lines (α = 1/2) and dotted lines (α = −1/2), respectively. The experimental MOIs of

the reference band (Kπ = 0+,α = 0, ground state band of 176Yb) are denoted by solid circles •.
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Fig. 4. The same as Fig. 3, but for the low-lying 3-qp and 5-qp bands of 177Lu.

4 Summary

The experimental 1-qp bands and low-lying high-

K 3-qp and 5-qp bands are analyzed by the PNC

method for treating the CSM with pairing interac-

tion, in which the blocking effects are taken into ac-

count exactly. The Nilsson level scheme (Lund sys-

tematics) is slightly adjusted to reproduce the band-

head energies of the 1-qp bands in the PNC calcula-

tion, the effective pairing interaction strength is de-

termined by the experimental odd-even difference in

binding energies, so no free parameters are involved.

The experimental J (1)’s of the five 1-qp bands are

reproduced very well by PNC calculations, includ-

ing the ω variation of MOIs and signature splitting.

The so-called “identical band” is due to the negligibly

small Coriolis response of the blocked orbitals (e.g.

π7/2+[404], π5/2+[402], etc.). To our knowledge, no

such satisfactory calculations were reported. The ex-

perimental MOIs of two high-K 3-qp bands and one

5-qp band are also reproduced very well by the PNC

calculation without additional free parameters, which

in turn confirms the configurations assigned to these

multiquasiparticle bands in previous articles[8, 9].
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