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Kinematics of τ two-body decay near τ

threshold at BES000 *
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Abstract The kinematic properties of two-body decay near τ threshold are studied according to the special

capacity of the BEPC/ accelerator and the BES0 detector. Explicitly presented are the transformations

of energy and momentum of hadronic particles between different reference frames, and the corresponding

distributions. A brand new method is proposed to obtain the energy spread of the accelerator by fitting the

energy distribution of hadron from τ semi-leptonic decays.
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1 Introduction

The τ-charm energy region is unique at the bound-

ary between the perturbative and non-perturbative

regime of quantum chromodynamics (QCD) and

therefore becomes a bonanza for high energy physics.

Since its completion in 1989, the Beijing Electron-

Positron Collider (BEPC) and Beijing Spectrometer

(BES) have been in operation successfully until 2004.

A great many interesting and exciting physics top-

ics were studied [1, 2]§among which was the precise

measurement of τ mass.

To meet the requirement of high precision τ and

charm decay data, both the BEPC and the BES

have been upgrated into BEPC/ [3] and BES0

[4], respectively. The designed peak luminosity is

1033 cm−2·s−1 optimized at a beam energy of

1.89 GeV, which is the highest luminosity accelerator

in the τ-charm region ever planned [5]. The new ma-

chine could produce up to 1.2×107 τ-pairs per year [6],

but this is not the crucial advantage of the τ-charm

factory for τ physics. Today, the B-factories have sam-

ples of over 109 τ-pair events [7] and the LHC will

produce 1012 τ-pairs per year even at low luminos-

ity [8]. The real advantage for τ physics at BES0

is that the τ-pair is produced at threshold, which al-

lows the experiments to analyze many aspects of the

τ decays with low systematic uncertainty.

Fig. 1. Momentum distributions for τ→ (π, K)ν

decays. The hatched histograms indicate the

distributions only with the effect of momen-

tum resolution of the detector (δp = 0.5%p),

while the blank histograms show both the

beam energy spread (∆E = 1.2 MeV) and mo-

mentum resolution effects. The distributions

are arbitrarily normalized.

The τ mass measurement at BES was performed

near the τ threshold more than two decades ago. A

precision of 0.2 MeV was achieved, which was the
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most accurate result at that time [9, 10]. Even re-

cently, few experiments reach compatible accuracy to

the previous BES result [11–14]. At the forthcom-

ing detector, as well as an even higher precision τ

mass measurement, more results are expected. One

of them is a high accuracy branching ratio measure-

ment [8]. For such kinds of measurement, the kine-

matics in the vicinity of the τ threshold provides

a unique advantage. As shown in the hatched his-

tograms in Fig. 1, if the τ-pair is produced at thresh-

old,
√

s = 3.554 GeV, the momentum distributions

of π and K particles from τ− → π−ν and K−ν sep-

arate from each other fairly well. It seems that no

particle identification is needed under such circum-

stances. However, in actual data taking, the beam

energy spread due to the accelerator has to be taken

into account, which widens the momentum distribu-

tions considerably, as shown in the blank histograms

in Fig. 1. Such broadness will cause π/K cross con-

tamination, then degrade the accuracy of the branch-

ing ratio measurement. There are other sources that

will change the kinematics of the τ decay. Therefore,

it is necessary to understand theoretically various ef-

fects on the kinematics of the decay particle near the

τ threshold at the BES0 experiment. It will provide

information for an understanding of the characteris-

tics of decay particles and for further experimental

measurements.

Since more than half of τ decays can be summa-

rized as two-body or quasi-two-body decay as τ± →

ντh
±, where h denotes the hadronic system which

might further fragment into several mesons [8, 15],

this paper is devoted to the kinematics of two-

body decay near τ threshold. Furthermore, to sim-

plify mathematical deduction and emphasize physical

meaning, only πν and Kν final states are used as spe-

cial examples.

2 Energy-momentum transformation

2.1 Three reference frames

First of all, three reference frames defined are

those needed for the study that follows.

1) The Colliding Beam System (CBS) is defined

as the frame where an electron and a positron of equal

absolute value of momentum collide with a crossing

angle (denoted as 2α, α = 11 mrad), as shown in

Fig. 2(a).

2) The Center-of-Momentum System (CMS) is de-

fined as the frame where the total momentum of the

system is zero1). For our study, the CMS contains a

pair of τ-leptons. Each of them has a momentum

with equal magnitude but opposite sign. If there is

no crossing angle between the electron and positron

beams, viz. α = 0, the CMS coincides with the CBS.

3) The Tau-Rest System (TRS) is defined as the

frame where the τ-lepton is at rest. Within this sys-

tem, the particle will have mono-energetic momentum

for two-body decays, such as τ→πν or τ→Kν.

Fig. 2. Three reference frames: (a) the colliding beam system where the dashed circle denotes the whole boosted

system due to the collision angle; (b) the center-of-momentum system where τ± fly along the same line but

opposite directions if just at the τ-pair threshold, two τ leptons produced at rest at the center are denoted

by a small dashed circle; (c) the tau-rest system where the τ-lepton is at rest and denoted by a solid point.

A two-body decay process τ→ hν is displayed in (c), where the solid line indicates the hadron track while

the dotted line dendes the neutrino. In all plots, the dot-dashed line indicates the horizontal beam pipe.

Following the generic relativistic convention, E

denotes the energy, p stands for the magnitude of the

vector momentum, which is written as the bold type

of the corresponding symbol p (p = |p|). (Hereafter,

the normal letter will represent the magnitude of the

corresponding bold letter). Energy and correspond-

ing momentum satisfy the relation

E2 = p2 +m2, or p2 = E2−m2 , (1)

1)Conventionally, the Center-of-Momentum System is also called the Center-of-Mass System. However, in relativistic particle

kinematics, we follow the nomenclature in Refs. [16, 17].
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where m is the mass of the particle. The sub-scripts

“‖” and “⊥” denote the parallel and perpendicular

components of momentum, respectively.

If there are two reference systems Σ and Σ′, the

energyandmomentum in each of themarerespectively

denoted as (E,p) and (E ′,p′), and see from Σ, Σ′

has velocity β, then the relation between (E ′,p′) and

(E,p) is expressed by the Lorentz transformation,
(

E′

p′
‖

)

=

(

γ −γβ

−γβ γ

)(

E

p‖

)

, p′
⊥ = p⊥, (2)

where γ = (1−β2)−1/2, and p‖ (p⊥) are the compo-

nents of p parallel (perpendicular) to β. The corre-

sponding inverse transformation reads
(

E

p‖

)

=

(

γ γβ

γβ γ

)(

E′

p′
‖

)

, p⊥ = p′
⊥. (3)

Eqs. (2) and (3) are standard forms utilized in the

high energy community.

For clearness and convenience, some symbols to

be used afterwards are tabulated in Table 1. As far

as angular variables are concerned, in the CMS, the

direction of motion of the positron along the beam

pipe (say, the direction from the left to the right along

the dot-dashed line in Fig. 2(b)) and in the TRS, the

direction of motion of the τ lepton, are chosen respec-

tively as both the positive z-axis and the polar-axis.

Table 1. Notations for various variables and quantities.

symbol meaning

Ee beam energy

pe beam momentum

W energy of the CMS

Eα energy of the CMS in the CBS

pα momentum of the CMS in the CBS

Ẽ energy of decay particle in the CBS

p̃ momentum of decay particle in the CBS

Ec energy of τ in the CMS

pc momentum of τ in the CMS

E energy of decay particle in the CMS

p momentum of decay particle in the CMS

θ azimuthal angle of decay particle in the CMS

φ polar angle of decay particle in the CMS

Eτ energy of τ in the TRS

pτ momentum of τ in the TRS

E∗ energy of decay particle in the TRS

p
∗ momentum of decay particle in the TRS

θ∗ azimuthal angle of decay particle in the TRS

φ∗ polar angle of decay particle in the TRS

In addition, we introduce a function f to denote

the distribution of the differential cross section,

f(x) =
dσ

dx
, (4)

where x indicates the variable vector. The transfor-

mation between variables x and y is realized through

the calculation of Jacobian ∂y/∂x, viz.

f(x) = f(y) ·
∣

∣

∣

∣

∂y

∂x

∣

∣

∣

∣

. (5)

2.2 Lorentz transformation

Now we consider the Lorentz transformation be-

tween different systems and start from the TRS. In

the TRS, τ is at rest, therefore pτ = 0 and Eτ = mτ

(the τ mass). For two-body decay in the TRS, the

momenta of two decay particles have the same magni-

tude but opposite direction. Notice that the neutrino

mass is zero, it is immediately obtained

p∗ =
m2

τ
−m2

h

2mτ

, E∗ =
m2

τ
+m2

h

2mτ

, (6)

where subscript h indicates the hadron, that is a pion

or kaon for the current analysis.

Seeing from the CMS, the TRS has a velocity βc,

so applying the Lorentz transformation Eq. (2), the

relation between the CMS and the TRS can be ac-

quired. We define

βc =
pc

Ec

, γc =
Ec

mτ

, ηc =
pc

mτ

. (7)

Here, a new quantity ηc = γcβc is introduced for the

convenience of derivation. With the help of ηc, it can

be acquired as

p‖ =
p ·ηc

η2
c

ηc, p⊥ = p−p‖ . (8)

Using Eq. (2),

E∗ = γcE−ηc ·p,

p∗
‖ = γcp‖−ηcE,

p∗
⊥ = p⊥. (9)

Again, notice the definition of ηc and use the re-

lation in Eq. (8), it is acquired finally














E∗ =
1

mτ

·(EcE−pc ·p) ,

p∗ = p− pc

mτ

·
(

E− pc ·p
Ec +mτ

)

.

(10)

Using Eq. (3), the inverse transformation can be

obtained analogously,














E =
1

mτ

·(EcE
∗+pc ·p∗) ,

p = p∗+
pc

mτ

·
(

E∗+
pc ·p∗

Ec +mτ

)

.

(11)

Seeing from the CBS, the CMS has velocity βα, then

β
α

=
pα

Eα

, γα =
Eα

mτ

, η
α

=
pα

mτ

. (12)
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With a similar technique, the transformation from

the CBS to the CMS reads














E =
1

mτ

·(EαẼ−pα · p̃) ,

p = p̃− pα

mα

·
(

Ẽ− pα · p̃
Eα +mα

)

,

(13)

and the transformation from the CMS to the CBS is

as follows,










Ẽ =
1

mτ

·(EαE−pα ·p) ,

p̃ = p+
pα

mα

·
(

E +
pα ·p

Eα +mα

)

.
(14)

Experimentally, Ee and pe are provided by the

accelerator, before collision, Eα = 2Ee and pα = 2pe,

after collision,

Eα = 2Ee , pα = 2pe sinαx̂ , (15)

where x̂ indicates the unity vector along the x-

direction (the direction vertical to that of the beam

pipe in the horizontal plane; refer to Fig. 2). No-

tice the relation Ee =
√

p2
e +m2

e and neglecting the

electron mass me, pe ≈ Ee, so from Eq. (15), pα ≈
Eα sinαx̂; then Eq. (12) becomes

β
α

= sinαx̂, γα =
1

cosα
, η

α
= tanαx̂ . (16)

In the CMS, the total momentum is zero and

the total energy is denoted as W . So with the help

of Eq. (16), the Lorentz transformation between the

CMS and the CBS leads to the relation

Eα = γαW, or W = Eα cosα . (17)

If α = 0, then W = Eα. In other words, the CBS

coincides with the CMS, just as expected.

3 Distribution transformation

3.1 Boost

In the CMS, if the energy is just at τ thresh-

old, that is W = 2mτ, two τ leptons are produced

at rest. The momentum of the two-body hadron is

fixed as given in Eq. (6). However, when the energy

increases, the distribution of momentum will expand

accordingly. The range of momentum distribution is

determined by the difference between the maximum

and minimum momenta, which are obtained when the

decay hadron flies along or opposite to the boost di-

rection, i.e. parallel or anti-parallel to βc or β
α

(in

such a case, the perpendicular component of momen-

tum is zero). By virtue of Eq. (3),
(

E+

p+

)

=

(

γc γcβc

γcβc γc

)(

E∗

p∗

)

, (18)

and
(

E−

−p−

)

=

(

γc γcβc

γcβc γc

)(

E∗

−p∗

)

. (19)

Here, the minus sign before the momentum is added

to keep p− and/or p∗ positive numbers. Conse-

quently, in the CBS,
(

Ẽ+

p̃+

)

=

(

γα γαβα

γαβα γα

)(

E+

p+

)

, (20)

and
(

Ẽ−

−p̃−

)

=

(

γα γαβα

γαβα γα

)(

E−

−p−

)

. (21)

Using the above equations, the range of momentum

is obtained,

∆p = p̃+− p̃− = 2(γαβαγc +γcβcγα)E∗ . (22)

The variations in ∆p with energy W are shown in

Fig. 3.

Fig. 3. ∆p as a function of energy W pion (solid

line) and kaon (dashed line) momenta. The

lines below for pion and kaon correspond to

the case α = 0, which amounts to the boost

effect merely in the CMS.

Some remarks are in order here. First, it is seen

that for the CBS the effect due to the crossing an-

gle of the colliding beam is fixed (along the x̂ direc-

tion) and is comparatively small (for α = 11 mrad,

cosα ≈ 1 and sinα ≈ 0), which can be described by

a definite Lorentz transformation. Therefore, in the

following study, such an effect is neglected and the

discussion is focused on the kinematics in the CMS.

Second, in the vicinity of the τ threshold, the velocity

of the particle in the TRS (denoted as v∗ = p∗/E∗)

is usually greater than the velocity of the reference,
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such as βc or βα. When v∗ = βc, it can be worked

out that Wπ = 22.8 GeV and WK = 6.9 GeV. So for

pion and kaon, as long as W < Wπ or W < WK,

then v∗ > βc. As in the τ-charm region with W usu-

ally less than 5 GeV, the condition v∗ > βc is always

satisfied. Third, as shown in Fig. 3, the momentum

range expands rather rapidly as the energy increases,

which implicates the great impact of energy spread

on the momentum distribution as mentioned in the

introduction. Next we consider this problem in more

detail.

3.2 Energy spread

In this section, the energy spread effect on the

distribution of the final state hadron energy instead

of that of the momentum is considered. The calcu-

lation for scalar energy is much easier than that for

momentum, which is a vector.

We start from the TRS, where the angular distri-

bution of the hadron is isotropic,

f(cosθ∗,φ∗) =
1

4π
. (23)

Integrating with respect to dφ∗,

f(cosθ∗) =
1

2
. (24)

By virtue of the basic transformation law [17],

f(E) = f(cosθ∗)
∂cosθ∗

∂E
.

From Eq. (11),

E =
1

mτ

·(EcE
∗+pcp

∗ cosθ∗) , (25)

∂cosθ∗/∂E = mτ/(pcp
∗) is immediately obtained,

then

f(E) =
mτ

2pcp∗
. (26)

The independence of f(E) on E indicates that E has

equal probability along any spatial direction in the

CMS without regarding the energy spread effect.

Since −1 6 cosθ∗ 6 1, from Eq. (25), the maxi-

mum and minimum of E are obtained at θ∗ = 0 and

π, that is,

Emax =
1

mτ

·(EcE
∗+pcp

∗) ,Emin =
1

mτ

·(EcE
∗−pcp

∗) .

(27)

With Emax and Emin, Eq. (26) can be recast in an

explicitly energy-dependent form,

f(E) =
mτ

2pcp∗
· [Θ(E−Emin)−Θ(E−Emax)] , (28)

where Θ is the step function and the value field of E

ranges from −∞ to +∞.

Now consider the energy spread effect. In the

CMS, notice W = 2Ec, or

Ec =
W

2
, pc =

W

2

√

1− 4m2
τ

W 2
. (29)

Here, W is subject to the energy spread effect, that

is to say, W is actually a random number that obeys

the Gaussian distribution

fG(W ) =
Θ(W −2mτ)√

2π∆
exp

[

− (W −W0)
2

2∆2

]

, (30)

where ∆ is the energy spread1), determined by the

accelerator performance, and W0 is the nominal en-

ergy value. Therefore, in the light of Eq. (25), E is

the function of two random variables cosθ∗ and W

(through Ec by Eq. (29)). To acquire the distribu-

tion of E from those of cosθ∗ and W , the variable

transformation technique in probability theory is ado-

pted [18]. For clearness, cosθ∗ is denoted as x, then

f(W,x) = fG(W ) ·f(x) . (31)

Here, W and x are two independent random variables.

fG(W ) is given by Eq. (30), and f(x) by

f(x) =
Θ(x+1)−Θ(x−1)

2
. (32)

The distribution with new variables E and x can be

related to the previous one by Jacobian determinant,

g(E,x) = f(W,x)

∣

∣

∣

∣

J

(

W,x

E,x

)
∣

∣

∣

∣

, (33)

with

J

(

W,x

E,x

)

=

∣

∣

∣

∣

∣

∣

∣

∂W

∂E

∂W

∂x
∂x

∂E

∂x

∂x

∣

∣

∣

∣

∣

∣

∣

=
∂W

∂E
. (34)

Integrating with respect to x, finally the distribution

for E is obtained as

g(E) =

∞∫

−∞

g(E,x)dx

=

∞∫

−∞

dxf [W (E),x]

∣

∣

∣

∣

∂W

∂E

∣

∣

∣

∣

, (35)

with

W =
2mτ

(E∗)2−(xp∗)2
·
[

EE∗

+xp∗
√

E2 +(xp∗)2−(E∗)2

]

, (36)

and

∂W

∂E
=

2mτ

(E∗)2−(xp∗)2
·
[

E∗ +
xp∗E

√

E2 +(xp∗)2−(E∗)2

]

.

(37)

1)According to Ref. [5], ∆(MeV) = 0.386E2
e (GeV2), so at τ threshold, ∆≈ 1.22 MeV.



1676 Chinese Physics C (HEP & NP) Vol. 34

The detailed derivation of Eqs. (36) and (37) can be

found in the Appendix.

Figure 4 shows three energy distributions corre-

sponding to different nominal energies W0. The en-

ergy spread (∆ = 1.2 MeV) effect has been taken

into account. The solid line indicates the distribu-

tion which is just at τ threshold (W0 = 2mτ); the

dashed line indicates that the distribution is around

two ∆s above the τ threshold (W0 = 2mτ +2∆); and

the dot-dashed line indicates that the distribution is

around five ∆s above τ threshold (W0 = 2mτ +5∆).

The broadness of energy distribution is obvious with

the increase in center-of-energy.

Fig. 4. Energy distribution (g(E)) at differ-

ent nominal energies (W0) with the effect due

to the energy spread (∆ = 1.2 MeV). The

solid line indicates W0 = 2mτ, the dashed

line W0 = 2mτ +2∆, and the dot-dashed line

W0 = 2mτ + 5∆. Here, the πν final state is

considered and E indicates the energy of π in

the CMS.

3.3 Momentum resolution

Momentum resolution is another experimental ef-

fect which should be taken into account. For the

nominal momentum p0, the actual momentum obeys

a Gaussian distribution,

f(p,p0) =
1√
2πδ

exp

[

− (p−p0)
2

2δ2

]

, (38)

where the δ is momentum resolution. Noting the rel-

ativistic relation between energy and momentum as

given in Eq. (1) and using the chain rule for distribu-

tion transformation [17], it is found that

f(E,E0) = f [p(E),p0(E0)] ·
∂p

∂E

=
1√
2πδ

exp

[

− (
√

E2−m2
h−p0)

2

2δ2

]

× E
√

E2−m2
h

, (39)

where p0 =
√

E2
0 −m2

h.

In the light of conditional probability theory [18],

the synthetic density of g(E) in Eq. (35) and f(E,E0)

in Eq. (39) can be obtained, viz.

G(E) =

+∞∫

−∞

g(z) ·f(E,z) dz . (40)

In the actual calculation, the up and low limits are

taken as a few times δ away from the center value of

p0.

3.4 Fitting energy spread

The energy spread is an important parameter for

both the accelerator and the detector but is difficult

to measure accurately. Around the τ threshold, the

energy spread is usually extrapolated from those of

J/ψ and ψ′ [10], which are obtained by fitting the

corresponding resonance parameters [19, 20]. Here

we present a brand new method to determine the en-

ergy spread in the vicinity of the τ threshold.

As seen from the analyses in the previous sections,

the energy spread effect will broaden the energy dis-

tribution considerably and therefore weaken the ad-

vantage of kinematics near the τ threshold. On the

other hand, the prominent effect of the energy spread

on the energy distribution makes it possible to ex-

tract the information of energy spread directly from

the energy distribution. To confirm this idea, we re-

sort to a Monte Carlo (MC) simulation to simulate

two-body τ-lepton decay near the threshold. For sim-

plification, we only consider two important experi-

mental parameters: the energy spread of the BEPC/

(∆ = 1.2 MeV) [3, 5] and the momentum resolution

of the BES0 (δ/p = 0.5%) [4].

Our simulations are classified into four steps.

Firstly, for a nominal c.m. energy W0, the experi-

mental energy is obtained by sampling

W = W0 +∆ ·ξ ,

where ξ is a random number of standard normal dis-

triubtion N(0,1). It should be noted that the kine-

matic requirement W > 2mτ must be added as indi-

cated by the step function in Eq. (30).

Secondly, in the TRS, E∗ and p∗ are given by

Eq. (6). As to p∗, its components are obtained as

follows,

p∗
x = p∗ sinθ∗ cosφ∗ ,

p∗
y = p∗ sinθ∗ sinφ∗ ,

p∗
z = p∗ cosθ∗,

where φ∗ has a uniform distribution between 0 and
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2π, and cosθ∗ has a uniform distribution1) between

−1 and +1.

Thirdly, Ec and pc can be obtained from W ac-

cording to Eq. (29). In the CMS, pc distributes uni-

formly for φc and cosθc
2), that is,

pcx = pc sinθc cosφc,

pcy = pc sinθc sinφc,

pcz = pc cosθc,

where the subscript c indicates the CMS. With

(Ec,pc) and (E∗,p∗), according to Eq. (11), the en-

ergy E and momentum p in the CMS are acquired,

then

p =
√

p2
x +p2

y +p2
z .

Finally, consider the momentum resolution effect.

The momentum p obtained in the third step is treated

as the nominal momentum and denoted as p0, then

the measured momentum p is obtained by sampling

p = p0 +δ ·ζ ,

where ζ is a random number of standard normal dis-

tribution N(0,1). The measured energy is then cal-

culated as E =
√

p2 +m2
h.

Figure 5 displays the fit results of energy distri-

bution at different c.m. energy with effects due to

both the energy spread and the momentum resolu-

tion. The density depicted in Eq. (40) is used as the

fitting function3) and three parameters (∆, δ and an

overall normalization factor) are set free in the fit-

ting. The minimization is realized by the MINUIT

package [24].

Fig. 5. Energy distributions at different centers-of-energy with effects due to the energy spread (∆ = 1.2

MeV) and momentum resolution (δ/p = 0.5%). The solid lines are the best fit results while the dots with

error bars are the simulated data. The produced events are 0.5M for all three c.m. energies: (a) W0 =2mτ,

(b) W0 = 2mτ +2∆, and (c) W0 = 2mτ +5∆. Here, the πν final state is considered and E indicates the

energy of π in the CMS.

The results relevant to the fits are summarized in

Table 2, where the statistical error is solely the value

from the minimization fitting while the systematic

only indicates the deviation of the fitted value from

the input in the MC simulation. As to the relative

error (ν), it is calculated as follows: for certain vari-

able y representing c.m. energy W0 or energy spread

∆, the fitted value is denoted as yfit and the input

MC value as yMC, then the relative difference

νy ≡
|yfit−yMC|

yMC

.

Scrutinizing the results quoted in Table 2 reveals

the following two points. Firstly, with the increase

1) In the TRS, the distribution of hadron from τ decay has the form [21]

dσ

dcosθ∗
= 1+κh cosθ∗,

where κ = +1 or −1, which corresponds to a 100% positive or negative polarized τ lepton. However, in our experiment, the

unpolarized particles are measured and on average the distribution for the τ-lepton decay is uniform.

2)The differential cross section for the τ-pair in the CMS is an analogue of the µ-pair [22],

dσ

dΩ
=

α2

4W 2

√

1−
m2

τ

E2
c

[(

1+
m2

τ

E2
c

)

+

(

1−
m2

τ

E2
c

)

cos2 θc

]

.

At the τ threshold, Ec ≈mτ, therefore the dependence of dσ/dΩ on cos2 θc can be neglected. In other words, a uniform distribution

could be used in the vicinity of τ threshold in our study. As a matter of fact, the spatial distribution of p has no effect on our

analysis, since here only the magnitude of p is of concern.

3)The two dimensional integration is realized by the CERN library program [23].



1678 Chinese Physics C (HEP & NP) Vol. 34

Table 2. The relative errors of the statistical

and systematic about c.m. energy (W0) and

energy spread (∆) for different numbers of

produced events (Nevt.) at different energy

points. Here, the statistical error (the first

number for each item) is solely the value from

the minimization fitting while the systematic

error (the second number for each item) only

indicates the deviation of the fitted value from

the input in the MC simulation.

Nevt. 2mτ 2mτ +2∆ 2mτ +5∆

c.m. energy (10−5/10−5)

5k 6.5/2.4 1.3/1.5 2.2/3.4

10k 4.4/4.8 1.0/0.0 1.6/1.1

0.5M 0.6/3.2 0.1/4.0 0.2/2.0

energy spread (10−2/10−2)

5k 9.8/7.3 5.7/9.4 9.6/14

10k 6.4/9.2 3.9/5.1 5.9/5.0

0.5M 0.9/5.1 0.5/2.3 0.8/2.8

in the data sample, the statistical errors decrease cor-

respondingly while the case is more complex for the

systematic errors. For the fit of W0, the deviation

remains almost the same regardless of the size of the

sample. For ∆, the deviation is commonly greater

than the statistical precision and the decrease in sys-

tematic uncertainty is rather slow compared with the

statistical one. Secondly, for the W0 fit, there seems

to be no optimal point for systematic deviation, that

is to say any energy point will yield almost the same

accuracy; while as far as the statistical error is con-

cerned, the energy point W0 = 2mτ +2∆ seems more

favorable. For ∆ fit, the point W0 = 2mτ+2∆ is also

favorable, which provides more accurate results. In

other words, for energy spread measurement, neither

the τ threshold nor the energy point far away from

the threshold is optimal. Summarizing the above

discussion, the results listed in Table 2 indicate1)

that the optimal energy point for the fit should be

around (2mτ + 2∆). In addition, from the experi-

mental point of view, the data sample of the size of

10 k is reasonable, which could accommodate the en-

ergy spread value with the uncertainty at the level

of five percent2). Such accuracy is much better than

the present experimental measurement whose uncer-

tainty is at the level of 10% to 15% [25, 26].

4 Summary

In this paper, we analyze in detail the kinematics

for the two-body decay of the τ lepton near its thresh-

old in e+e− annihilation at the BES0. The experi-

mental conditions are taken into account, the trans-

formations of energy and momentum between differ-

ent reference frames are studied and special transfor-

mation formulas are presented.

Based on the transformation formulas, both the

energy spread and the momentum resolution are

taken into consideration for the energy distribution

of hadron from the τ decay. The analytic integral

expression for energy distribution is firstly obtained,

which can be used for fitting the experimental energy

distribution.

The most important application of the analytical

formula is that we can fit the measured energy distri-

bution of the particle from the τ decays to obtain the

value of the energy spread. The Monte Carlo simu-

lation technique is adopted to confirm our idea and

to study the fit uncertainty relevant to the energy

spread. The results indicate that, through minimiza-

tion, the energy spread can be determined with an

accuracy at the level of five percent.

The author gratefully acknowledges Professor

ChangZheng Yuan for his constructive comments and

valuable suggestions.

1)In order to fix the optimized energy point, more detailed studies are needed; e.g. the finer fit scan within the energy region

[2mτ,2mτ +5∆] should be performed. In addition, more accurate Monte Carlo simulations which take into account all detector

details should be utilized in order to obtain the practical conclusion.

2)Further study of the relation between momentum resolution and energy spread uncertainty indicates that the smaller the

momentum resolution, the smaller is the systematic uncertainty of the energy spread.
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Appendix A

Formulas

Starting from Eq. (25), noticing x = cosθ∗ and intro-

ducing variable ρ= xp∗, we immediately obtain

mτE−EcE
∗ = pcρ .

Utilizing the relation of Eq. (29) and squaring both sides

of the above equation lead to

(E∗2−ρ2)W 2−4mτEE∗W +4mτ(E
2 +ρ2)= 0. (A1)

This quadratic equation for W has two solutions:

W =
2mτ

E∗2−ρ2
·
[

EE∗±|x|p∗
√

E2 +ρ2− (E∗)2
]

. (A2)

Noticing the symmetry of the value field of x, two so-

lutions of W could be expressed as an integrated one;

that is,

W =
2mτ

E∗2−ρ2
·
[

EE∗+ρ
√

E2 +ρ2− (E∗)2
]

, (A3)

which recovers Eq. (36). Differentiating W with respect

to E yields Eq. (37).

We know for certain Ec, E has a uniform distribution

as indicated by Eq. (26) or Eq. (28). Moreover, notic-

ing Eq. (27), it can be seen that the distribution is sym-

metric about the central value γcE
∗ (with γc = Ec/mτ).

Physically, such symmetry should be remained for density

g(E) in Eq. (35). Therefore, if the measured energy, de-

noted as Emea, is greater than γcE
∗, E =Emea; otherwise,

E = 2γcE
∗ −Emea. With this symmetric consideration,

∂W/∂E is always positive as well.
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