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Can a non-unitary effect be prominent in neutrino

oscillation measurements? *
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Abstract Subject to neutrino experiments, the mixing matrix of ordinary neutrinos can still have small vi-

olation from unitarity. We introduce a quasi-unitary matrix to interpret this violation and propose a natural

scheme to parameterize it. A quasi-unitary factor ∆QF is defined to be measured in neutrino oscillation exper-

iments and the numerical results show that the improvement in experimental precision may help us figure out

the secret of neutrino mixing.
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1 Introduction

The definite evidence of neutrino oscillation has

confirmed that neutrinos are massive and they ex-

hibit non-trivial mixing, which has strengthened our

belief in new physics beyond the Standard Model

(SM). The compelling experiments verifying neutrino

masses and mixing angles are from the neutrino

oscillation measurements that include solar (SNO,

KamLAND) [1, 2], atmosphere (SK) [3] and reactor

(CHOOZ) [4] neutrino experiments. These can give

the mass-squared splitting and trigonometric function

of mixing angles. Up to now, all other experiments to

measure the absolute values of neutrino masses have

only been able to give the upper limits and relatively

rough mixing angles.

To explain neutrino masses, adding the neutrino

Yukawa coupling (which gives the Dirac mass of neu-

trino) to the SM Lagrangian is straightforward and

causes no anomaly, but the real problem is the huge

hierarchy between the up component (νe, νµ, ντ) and

the down component (e, µ, τ) of the lepton isospin

doublet, which is very different from the hierarchy

between the up-type and down-type quarks. Among

the mechanisms proposed to generate very light neu-

trino masses, the most popular one is the seesaw

mechanism [5, 6]. In seesaw models, heavy right-

handed Majorana neutrino mass terms are added to

the SM Lagrangian as they are a complete singlet of

gauge transformation in the SM. The Dirac masses of

neutrinos, which generally at the electro-weak scale

are suppressed by Majorana mass terms to be ultra-

light Majorana neutrinos, are (primarily) left-handed.

This mechanism embodies not only the mixing of or-

dinary light neutrino flavors, which is similar to quark

mixing, but also the mixing between ordinary and

additional heavy neutrinos, which is different from

charged fermions. On the other side, current experi-

menters and data analyzers still use the three-flavor

neutrino model in which the neutrino eigenstates are

transformed by a 3× 3 unitary matrix, namely the

PMNS matrix [7], just the same as the CKM matrix.

If there do exist more than three neutrino species,

the matrix that transforms the ordinary neutrino

mass eigenstate to the flavor eigenstate should not be

inherently unitary [8, 9], as the additional heavy neu-

trinos can mix with the three ordinary ones and make

the unitarity of the PMNS matrix deviated. The non-

unitary effects of ordinary neutrino mixing have been

extensively studied in the literature, giving possible

correction to unitarity and further with new param-

eterizations for the neutrino mixing matrix [10–14].

While models like these emphasize obtaining a more

physical interpretation of neutrino mixing, there is

still one pressing question that needs to be answered:

can the non-unitary effects stand out within the cur-
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rent or forthcoming measurement precision? That

is to say whether the violation from unitarity tests

will be more of experimental error or theoretical non-

unitary effects itself. The answer to the question is

more fundamental for the parameterization of non-

unitary neutrino mixing.

In this work, we start from a relatively simpler yet

reasonable parameterization and try to answer the

question. A quasi-unitary matrix is proposed to be

theoretically deviated from unitarity, thus this theo-

retical effect may account for the violation of unitar-

ity. Then, to determine whether the neutrino mixing

is unitary or quasi-unitary is important for the pa-

rameterization of neutrino mixing matrix. Further-

more, such tests will give us more hints about the

lepton sector of the SM because a unitary neutrino

mixing implies that neutrinos are Dirac fermions or

are Majorana fermions with no mixing with the heavy

degrees of freedom in some seesaw models [14], but

a non-unitary mixing matrix will tell us other stories

about this.

2 Quasi-unitary mixing and parame-

terization

To test the unitarity of neutrino mixing is impor-

tant because unitary mixing implies only three Dirac

neutrinos or only three special Majorana neutrinos,

while quasi-unitary mixing will imply the existence

of more than three neutrino species and a new mech-

anism for the generation of neutrino mass. For a uni-

tary mixing matrix U ,

UU † = I. (1)

Subject to constraints from weak decays, the mix-

ing matrix of ordinary neutrinos can be violated from

unitarity at the order of 1% level [9]. If this mixing

matrix is inherently quasi-unitary with the definition

Q = (I +X)U , (2)

where X is a small matrix at subleading order (1st

order), strictly speaking, matrix X should be hermi-

tian. Many parameters need to be introduced for its

parameterization, as done by many previous works.

Considering that only a few neutrino experimental

measurements are available, it is sufficient to give

a relatively simpler, yet reasonable parameterization

for this matrix. An ideal parameterization will be

X +X† = 0,

QQ† = I +XX†, (3)

thus QQ† equates to I at the first order and violates

the unitarity slightly at the second order. However,

this scheme seems to be ideal since on the theoret-

ical side, the unitarity is violated at the first order

in many neutrino mixing models, such as the seesaw

models; and on the experimental side, we cannot de-

termine whether the error is from the experimental

measurements or theoretically from the second order

violation by the test of NN † (N is the neutrino mix-

ing matrix measured from experiments). The second

order violation implies that the neutrino mixing ma-

trix can violate the unitarity greatly. So to determine

the order of the violation of unitarity is important for

the unitarity test. In our paper, we change the ideal

scheme in Eq. (3) slightly and propose a simple pa-

rameterization for neutrino mixing to try to make the

problem clear.

If neutrinos are Majorana fermions, as predicted

by the seesaw mechanism, the mixing matrix for the

diagonalization of the left- and right-handed neutri-

nos should be an overall unitary matrix O instead of

the 3×3 PMNS matrix for the left-handed neutrinos,

which is only part of O and no longer unitary. To be

more clear, we denote the mixing matrix O as

O2n×2n =

(

An×n Cn×n

Dn×n Bn×n

)

, (4)

where A is the matrix that transforms the mass eigen-

states of three left-handed neutrinos to the flavor

eigenstates with n as the flavor number. The uni-

tarity of O requires that

AA†+CC† = I. (5)

We also denote A = (I +X)U as the quasi-unitary

definition in Eq. (2), where X is a small arbitrary

matrix at the subleading order. Thus we have

AA† = I +X +X†+XX† = I−CC†. (6)

We can resort to the details of a seesaw mechanism

to decide which situation is appropriate for neutrino

mixing. For example, in the Type-I seesaw model,

the ultralight values of mν can be obtained by

mν =−mD

(

mR
M

)−1
mT

D, (7)

where mD is the Dirac mass matrix arising from

Yukawa coupling and mR
M is the Majorana mass ma-

trix, which is unforbidden by gauge transformation of

the SM. For the transformation matrix O, it diago-

nalizes the neutrino mass matrix in two steps. The

first step is a block diagonalization, which reduces the

problem to a two by two problem and the rotation

is essentially a generalized 2×2 Euler rotation. The

second step is the diagonalization of a light neutrino



No. 12 LÜ Lei et al: Can a non-unitary effect be prominent in neutrino oscillation measurements? 1793

mass matrix by a unitary matrix U1 and that of the

heavy one by U2. Then the overall matrix is given by

O2n×2n =

(

cosΘ U1 sinΘ U1

−sinΘ U2 cosΘ U2

)

, (8)

where the sinΘ and cosΘ are to be interpreted as

series expansions of a small matrix Θ = mD/mR
M.

From Eq. (4),

A = cosΘU1 =

(

I−
Θ2

2!
+

Θ4

4!
−·· ·

)

U1, (9)

C = sinΘU1 =

(

Θ−
Θ3

3!
+

Θ5

5!
−·· ·

)

U1, (10)

we can see that X+X† is at the same order of CC†,

thus A violates unitarity at the first order. Because

sinΘ is a small matrix at O(mD/mR
M) and we know

nothing about mD and mR
M, in order to simplify the

problem, we consider that

C ∼U/η, (11)

where 1/η is a small number. Here we just use an

approximate matrix to substitute the transformation

matrix O, and the diagonalization is not consistent

with the seesaw mechanism, but it can simplify the

parameterization for the quasi-unitary matrix and

give us a way to test the order of unitarity violation.

Now we have

AA† ≈ I +X +X† ≈ I−
I

η2
. (12)

For simplicity, we treat X as a real matrix, thus X

can be parameterized as

X =



















−ε x y
...

−x −ε z
...

−y −z −ε
...

· · · · · · · · ·
. . .



















, (13)

where ε = 1/2η2. We should note that here we just

treat ε as a parameter that can be set as any real

number, even zero, to make A a quasi-unitary ma-

trix, thus our parameterization is not totally based on

a seesaw mechanism but on a much simpler and more

generalized way to parameterize the quasi-unitary

matrix. In such parameterization, AA† deviates from

I only in the diagonal elements at the first order when

ε 6= 0. This is consistent with the result of Ref. [9], in

which NN † deviates from I apparently in the diag-

onal elements. A is thus given by

A2×2 =

(

1−ε x

−x 1−ε

)(

cosθ sinθ

−sinθ cosθ

)

(14)

for the two-flaver case and

A3×3 =









1−ε x y

−x 1−ε z

−y −z 1−ε









×









c13c12 c13s12 s13

−c23s12−s23s13c12 c23c12−s23s13s12 s23c13

s23s12−c23s13c12 −s23c12−c23s13s12 c23c13









(15)

for the three-flavor case. Here, θ (θij) is the rota-

tion angle used to parameterize the unitary matrix

U2×2 (U3×3) and sij (cij) means sinθij(cosθij). Note

that we do not consider the CP phase δ in the three-

flavor case. In addition to the unitary parameteri-

zation, there are two more parameters for the 2× 2

quasi-unitary matrix and four more for the 3×3 one.

In the seesaw interpretation, parameters ε, x, y, z

are too small (typically around O(10−26)) to have any

implication for the neutrino measurements, thus the

neutrino mixing matrix A can be safely parameter-

ized as a unitary matrix. But if ε, x, y, z are not

so small, they can make unitary parameterization de-

viated with observable errors, which should be theo-

retical errors. In the next section, we will show the

implications for such parameterization in neutrino os-

cillation experiments.

3 Implications for neutrino oscillation

Ever since the issue of neutrino mixing was on

the table, it has been assumed that the neutrino

flavor eigenstates | να〉 (α = e, µ, τ) are a lin-

ear superposition of the neutrino mass eigenstates

| νi〉 (i = 1, 2, 3) through a unitary leptonic mix-

ing matrix: U∗
αi and | να〉 =

∑

i
U∗

αi|νi〉. By oscil-

lating when propagating in vacuum, the oscillation

probabilities can be expressed as (two flavors case

n = 2) [15]

P (
(−)
να→

(−)
νβ)≈Sαβ sin2 [1.27∆M 2(L/E)] (16)

for α 6= β and

P (
(−)
να→

(−)
νβ) ≈ 1−4Tα(1

−Tα)sin2 [1.27∆M 2(L/E)] (17)

for α = β, where E is the energy of neutrinos, L is

the distance they travel, ∆M 2 is the neutrino mass

squared splitting and

Sαβ ≡ 4

∣

∣

∣

∣

∣

∑

i Up

U∗
αiUβi

∣

∣

∣

∣

∣

2

, Tα ≡
∑

i Up

|Uαi|
2
. (18)
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Here, ‘i up’ denotes a sum over only those neutrino

mass eigenstates that lie above ∆M 2 or, alternatively,

only those that lie below it. The unitarity of U guar-

antees that Sαβ and 4Tα(1−Tα) get exactly the same

results in Eq. (16) and Eq. (17), which yield

4Tα(1−Tα) = Sαβ = sin2 2θ. (19)

This is the two-flavor case and the same result occurs

for the three-flavor case.

Inspired by Eq. (19), we define a ‘Quasi-unitary

factor’ to test the unitarity of neutrino mixing,

∆QF = 4Tα(1−Tα)−Sαβ. (20)

For the unitary mixing, ∆QF = 0 theoretically, so if

we calculate this factor from the experimental data, a

non-zero result must come from (and only from) the

experimental errors. But in the quasi-unitary case,

a non-zero result should be partially from the quasi-

unitarity. If ε = 0, ∆QF still equates to zero at the

leading order since

4Tα(1−Tα)≈Sαβ ≈ sin2 2θ+2xsin4θ, (21)

which is similar to Eq. (19), but the situation changes

when ε 6= 0, where we have

4Tα(1−Tα) ≈ sin2 2θ+2xsin4θ

−4εsin2 2θ+8εsin2 θ, (22)

Sαβ ≈ sin2 2θ+2xsin4θ−4εsin2 2θ, (23)

therefore ∆QF no longer equates to zero,

∆QF ≈ 8εsin2 θ+O(x2, ε2, · · · ). (24)

Thus, by comparing the neutrino oscillation data be-

tween P (να → να) and P (να → νβ), we can test

the unitarity of neutrino mixing. From Eq. (22) and

Eq. (23), one should realize that the mixing angle θ

here has a different meaning from the ordinary one

measured under the unitary parameterization, which

is essentially an effective mixing angle. To discrim-

inate the quasi-unitary mixing angles and those in

unitary scheme, we denote the quasi-unitary ones as

θQ in subsequent discussions. Meanwhile, as indi-

cated by Eq. (24), it is the diagonal parameter ε in

X that dominates ∆QF while the off-diagonal effect

by x, y, z appears at subleading order, thus it can

be absorbed into the effective unitary parameteriza-

tion of the mixing matrix. But from Eqs. (21, 22, 23),

we can see that x, y, z together with ε can make

θQ (maybe greatly) deviated from θ and make ∆QF

big enough to be measured in the neutrino oscillation

experiments.

Now we inspect the actual three-neutrino mixing

situation and try to give the ‘quasi-unitary correc-

tion’ to certain explicit measurements. As mentioned

above, in order to test the unitarity, we need to mea-

sure ∆QF dependent on the same θQ
ij , which needs

data from different oscillation patterns. In the case

of n = 3, however, such checks are very difficult, as

all the current accelerator, reactor, solar and atmo-

spheric neutrino data are described within the frame-

work of the 3×3 PMNS matrix. And different experi-

ments measure different θij and ∆m2
ij without consid-

ering the non-unitarity of neutrino mixing. We find

that short distance νe oscillation measurements may

give us some hints. For a short distance (L <5 km) it

is a good approximation to express the νe oscillation

probabilities in the unitary scheme as [15]

P (ν̄e → ν̄e) ≈ 1−sin2(2θ13)sin
2(∆m2

32L/4E),

P (νe →νµ) ≈ sin2(2θ13)sin
2(θ23)sin

2(∆m2
32L/4E),

P (νe →ντ) ≈ sin2(2θ13)cos2(θ23)sin
2(∆m2

32L/4E).

(25)

This takes the similar two-neutrino form with θ13 and

∆m2
32. If the neutrino mixing is quasi-unitary, ∆QF

can be defined as

∆QF = 4Te(1−Te)−Seµ−Seτ

≈ 8εsin2 θQ
13 +O(x2, xy, xε, · · · ), (26)

which has a similar form to Eq. (24). The measure-

ments of P (ν̄e → ν̄e) have already been taken in the

reactor neutrino experiments. However, P (νe → νµ)

and P (νe → ντ) are difficult to measure in accelera-

tor neutrino experiments. Thus we need more precise

experiments to measure ∆QF for the test of unitarity.

Though there are no data for such a test, the current

experiment data can give us some information about

the quasi-unitary mixing. In the next section we will

show some numerical results from current experimen-

tal constraints.

4 Testing unitarity by experiment

Solar, atmospheric and reactor neutrino experi-

ments are sensitive to different neutrino oscillations,

which give us the best fit mixing angles and the errors

in the unitary scheme. In the numerical calculation,

our general method was to require the new matrix

elements Aαβ in Eq. (15) to satisfy the corresponding

constraints derived from the latest data [16].

In the last section, we know that it is ε that domi-

nates the quasi-unitary factor while x, y, z and ε can

make the mixing angles deviate. Therefore, our first

step is to see how these parameters could influence

the mixing angles. In order to compare the unitary
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scheme and the quasi-unitary scheme, we scatter θQ
ij

from 0◦ to 90◦. For parameters x, y, z and ε, we

scanned them randomly between −0.1 and 0.1 and

kept all of the experimentally allowed points to see

the range of θQ
ij . The results are listed in Table 1

in comparison with the unitary scheme data derived

from Ref. [16].

Table 1. Comparison of the mixing angle

ranges under different schemes.

range

unitary scheme quasi-unitary scheme

θ
Q
12 31.8◦−36.4◦ 24.8◦−44.1◦

θ
Q
23 37.2◦−50.9◦ 31.8◦−56.3◦

θ
Q
13 < 10.9◦ < 18.4◦

As seen in Table 1, with x, y, z,ε 6= 0 and the same

required constraints for neutrino mixing, the allowed

ranges for neutrino mixing angles are expanded. If

the parameters x, y, z,ε are comparable to 10−1,

there will be highly deviated mixing angles. Though

such mixing angles have no direct physical meaning

(the physical value is Aαβ in Eq. (15)), we can see

from Eq. (21) that the measurement of trigonometric

function has been changed, which means that the an-

gles we measured under the unitary scheme are just

the effective values.

Since the quasi-unitary effect in Eq. (26) can be

reflected in the discrepancies of different measure-

ments of θQ
13, we can also calculate the quasi-unitary

factor from the simulation metioned above. The nu-

merical result is shown as the green points (gray ×)

in Fig. 1. As the figure indicates that under the

quasi-unitary parameterization required by the see-

saw mechanism, nowadays experimental data cannot

allow ε bigger than 0.05 and ∆QF can reach up to

2.6 × 10−2 at most, corresponding to the deviated

θQ
13

<∼ 18.35◦.

If ε and x, y, z in A are big enough, we can mea-

sure a sizable ∆QF in the quasi-unitary scheme. How-

ever, the error ranges in Ref. [16] cannot be totally

from the non-unitary effect because the experimental

errors also take a share. In fact, the seesaw-predicted

scales of x, y, z, ε are typically too small to reach

the order of 10−2 because the non-unitary effect is

very likely to be so trivial in comparison with the ex-

perimental error, which makes this theoretical effect

very hard to stand out within the precision capacity

of today. However, as long as the neutrino mixing

matrix is inherently non-unitary as predicted in the

seesaw framework, ∆QF will remain non-zero in the

measurements because it contains the theoretical de-

viation from unitarity. We expect that the precision

improvement of experiments will eliminate the exper-

imental background as much as possible, leaving a

relatively pure constitution of ∆QF.

Fig. 1. The magnitude of quasi-unitary factor

versus ε. The green points (gray ×) are ob-

tained by scattering ε, x, y, z randomly be-

tween −0.1 and 0.1, corresponding to the de-

viation (∆QF) from unitarity theoretically.

5 Conclusion

As the mixing matrix of ordinary neutrinos may

be unitary or quasi-unitary, we parameterize the mix-

ing as a quasi-unitary matrix with four additional pa-

rameters, ε, x, y, z, and define a quasi-unitary factor

∆QF for the test of unitarity. Our numerical analysis

gives the possible deviations in mixing angles with-

out violating any current experimental constraints,

as well as the magnitude of ∆QF, which separately

describes the theoretical sensibility of discrepancies

in future θ13 measurements. The improvement in

experimental precision may help us to figure out the

secret of unitarity of neutrino mixing and tell us

whether the seesaw framework is a rational model for

neutrino masses.
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N, Senjanović G. Phys. Rev. Lett., 1980, 44: 912

6 WANG Y F, Whisnant K, XIONG Z H, YANG J M, Young

B L (VLBL Study Group H2B-4). Phys. Rev. D, 2002, 65:

073021; Endoh T, Morozumi T, XIONG Z H. Prog. Theor.

Phys., 2004, 111: 123; CAO J, XIONG Z H, YANG J M,

Eur. Phys. J. C, 2004, 32, 245

7 Maki Z, Nakagawa M, Sakata S. Prog. Theor. Phys., 1962,

28: 870

8 Schechter J, Valle J W F. Phys. Rev. D, 1980, 22: 2227;

Phys. Rev. D, 1982, 25: 774; Langacker P, London D. Phys.

Rev. D, 1988, 38: 907

9 Antusch S, Biggio C, Fernandez-Martinez E, Gavela M B,

Lopez-Pavon J. JHEP0610, 2006, 084

10 Broncano A, Gavela M B, Jenkins E E. Phys. Lett. B, 2003,

552: 177; 2006, 636: 330

11 Broncano A, Gavela M B, Jenkins E E. Nucl. Phys. B, 2005,

705: 269

12 Fernandez-Martinez E, Gavela M B, Lopez-Pavon J, Ya-

suda O. Phys. Lett. B, 2007, 649: 427

13 Goswami S, Ota T. Phys. Rev. D, 2008, 78: 033012

14 XING Z Z, Phys. Lett. B, 2008, 660: 515; XING Z Z,

ZHOU S. Phys. Lett. B, 2008, 666: 166; XING Z Z.

arXiv:0901.0209 [hep-ph]; Prog. Theor. Phys. Suppl., 2010,

180: 112; arXiv:0905.3903 [hep-ph]

15 YAO W M et al. (Particle Data Group). J. Phys. G, 2006,

33: 1

16 Fogli G L, Lisi E, Marrone A, Palazzo A, Rotunno A M.

Phys. Rev. Lett., 2008, 101: 141801


