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Causality principle and nuclear dispersion anomaly

in the elastic scattering for α+12C system
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Abstract The optical model analysis of the alpha particle elastic scattering on a carbon target was performed

on the basis of the dispersion relation between the real and imaginary parts of the calculated volume integrals.

A nuclear dispersion anomaly in an α+12C system was observed and interpreted clearly.
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1 Introduction

Due to the absence of the related scattering data

and also the existence of ambiguities in the empirical

determination of the optical potential from available

data, the analysis of experimental elastic scattering

data usually does not give reliable information on the

energy dependence of the complex optical potential.

The aim of this paper is to describe the existence of

“anomalies” in the low-energy behaviors of W (r,E)

and V (r,E). It has been observed that | W (r,E) |

decreases sharply when E falls below the top of the

Coulomb barrier, and this decrease is accompanied by

a bell-shaped maximum of | V (r,E) |. This behavior

is due to the dispersion relation between V and W

[1–5]. If

V (r,E) =V0(r,E)+∆V (r,E), (1)

the dispersion relation is

∆V (r,E) =
P

π

∞∫

0

W (r,E′)

E′−E
dE′, (2)

where P is the “Principal value”. This dispersion

relation is a consequence of the following causality

principle: a scattered wave cannot be emitted before

the interaction has occurred.

The real and imaginary parts of the potential are

determined by the effective Nucleon-Nucleon (NN) of

interaction and some open channels, respectively [4].

Instead of V and W , usually their volume integrals,

JV and JW , are used. At the top of the Coulomb

barrier, V or JV decreases slowly, while W or JW

increases slowly [2].

2 Theoretical background

The single-particle wave equation is given by [6]
[

−~
2

2m
∇2 +M(E)

]

ΦE(~r) =EΦE(~r), (3)

where M(E)=V(E)+iW(E) is the non-hermitian

“generalized optical potential” operator that can be

constructed in such a way that the asymptotic be-

havior of ΦE(~r) for large |~r | yields the exact complex

elastic scattering phase shift of a nucleus-nucleus or

nucleon-nucleus collision. This depends upon energy.

By introducing the Fourier transforms

U(t) = (2π)−1

∫
M(E)exp(iEt/~)dE,

ψ(~r,t) = ΦE(~r)exp(iEt/~), (4)

the wave equation (3) becomes

−~
2

2m
∇2ψ(~r,t)+

∞∫

−∞

U(t− t′)ψ(~r,t′)dt′ = i~
∂
∂ t
ψ(~r,t).

(5)

The causality principle corresponds to the require-

ment that

U(t− t′) = 0 for t< t′.

Received 8 February 2010

1)E-mail: amjizad@gmail.com
©2010 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute

of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd



No. 12
Abdolmajid Izadpanah: Causality principle and

nuclear dispersion anomaly in the elastic scattering for α+12C system 1843

By integrating
M(E′)

E′−E
along with a contour C,

which runs along with a large circle and the branch

cuts, the following dispersion relation obtains,

V (E) = V0 +
P

π

E
−

t∫

−∞

W (E′)

E′−E
dE′+

P

π

+∞∫

E
+
t

W (E′)

E′−E
dE′

+
∑

p

Ap

E−Ep

+
∑

h

Ah

E−Eh

, (6)

where P is the principal value, E−
t and E+

t are the

branch-point of energies at which the left-hand and

the right-hand cuts start, and Ep and Eh are poles

that are located on the real axis between E−
t and E+

t ,

the residues Ap and Ah are real. The requirement to

be M(E) as an absorptive potential leads to

W (E) 6 0.

The hermitian potential V0 is given by the limit

V0 = lim
|E|→∞

V (E).

This is independent energy.

This is not enough information about the micro-

scopic theory of nucleus-nucleus scattering and the

existence and properties of the corresponding gener-

alized optical model potential. Existing models con-

sider the projectile and target as objects that are ei-

ther structureless or contain at most a few collective

degrees of freedom. Antisymmetrization is not con-

sidered unless one can approximate to the energy-

independent term V0. Hence, the dispersion relation

(6) becomes

V (~r,~r ′,E) = V0(~r,~r
′)+

∑

p

Ap(~r,~r
′)

E−Ep

+
P

π

∞∫

Et

W (~r,~r ′,E′)

E′−E
dE′, (7)

where the pole terms arise from eigenstates in the

excluded (nonelastic) channel space. Moreover, V0

represents the average interaction of the two nuclei

in the absence of nonelastic excitation, which can be

interpreted as a generalized “Folded” potential that

includes all of the exchange terms arising from an-

tisymmetrization between the two nuclei. These ex-

change terms alone make V0 nonlocal.

Since empirical model potentials are usually as-

sumed to be local and M is nonlocal, some local

equivalent to M has to be defined. Also it is nec-

essary for some averaging over energy to approach an

empirical optical potential. The average of the scat-

tering amplitude over an energy interval size I is given

by asymptotic behavior of the solution of the equation

(3), in which M(E) is replaced by M̄(E) =M(E−iI)

[7]. M̄(E) has the form

M̄(~r,~r ′,E) =V0(~r,~r
′)+∆V (~r,~r ′,E)+iW (~r,~r ′,E).

(8)

In the nucleon-nucleus case, it obtains

∆V (~r,~r ′,E) ≈
P

π

E
−

F∫

−∞

W (~r,~r ′,E′)

E′−E
dE′

+
P

π

∞∫

E
+
F

W (~r,~r ′,E′)

E′−E
dE′, (9)

where E+
F and E−

F are close to the nucleon separation

energy of the ground state of the system with (A+1)

and (A−1) nucleons, respectively. The dispersion in-

tegral, which runs from −∞ to E−
F , does not have the

form that has been accepted for the nucleus-nucleus

case. Finally, the dispersion relation is obtained as

∆V̄ (~r,~r ′,E)≈
P

π

∞∫

EF

W (~r,~r ′,E′)

E′−E
dE′. (10)

Here, we consider a local and spherically-

symmetric empirical optical model potential in the

form of U(r,E) =V (r,E)+iW (r,E). We assume that

one can write V in the form of V =V0+∆V , where V0

is the independent energy, while ∆V has intrinsically

dependent energy that can be evaluated as

∆V (r,E) =
P

π

∫
W (r,E′)

E′−E
dE′. (11)

When strong absorption exists, as in the case of

heavy ions, this equation is suitable. For the follow-

ing volume integrals of potential per interacting pair

of nucleons,

JW (E) =

[

4π

∫
W (r,E)r2dr

]

/

(ApAt), (12)

where Ap and At are the projectile and target mass

numbers, respectively. The dispersion relation can be

written in the form

J∆V (E) =
P

π

∫
JW (E′)

E′−E
dE′. (13)

Adopting the extrapolation of JW (E), which is

different for large positive and negative E, the value

of J∆V (EF) would be sensitive to these assumed

high-energy extrapolations. However, the difference

J∆V (E)−J∆V (EF) would remain rather stable. So it

is only considered as

J∆V,ES
(E) = J∆V (E)−J∆V (ES), (14)

where ES is a reference energy that lies in the interest

of energy domain. This difference is related to JW (E)
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by the following “subtracted dispersion relation”,

J∆V,ES
(E) = (E−ES)

P

π

∫
JW (E′)

(E′−ES)(E′−E)
dE′,

(15)

which determines J∆V (E) up to a constant.

The dispersion correction, generally, can be writ-

ten as

J∆V (E) = JCO
∆V (E)+JPO

∆V (E), (16)

where the “correlation” contribution is associated

with a dispersion integral that runs from -∞ to EF

while the “polarization” contribution is given by an

integral from EF to +∞.

3 Analysis of elastic α+12C scattering

An optical model analysis of elastic α+12C scat-

tering was performed at the different laboratory

energies that are available from the NNDC (EX-

FOR/CSISRS) database. The Woods-Saxon param-

eters were adjusted to obtain the best χ2 fit to the

scattering data by using the SPI-GENOVA program.

The ratio of the experimental and calculated differ-

ential cross sections for elastic α+12C scattering to

Fig. 1. Ratios of the differential cross sections

for elastic α+12C scattering at the different

laboratory energies to the respective Ruther-

ford cross sections.

the respective Rutherford cross sections are shown in

Fig. 1.

Results show that the fits are clearly satisfac-

tory. In this figure, a nuclear Rainbow structure is

well indicated. Owing to this, we were able to con-

struct the systematic energy of the positions of Airy

minima (Fig. 2). This systematic energy confirmed

the inverse-energy law and made it possible to se-

lect potentials [3]. In Fig. 2, the circles and triangles

are indicated by experimental Airy minima, while the

stars are calculated Airy minima.

Fig. 2. Positions of Airy minima of experimen-

tal angular distributions for elastic α+12C

scattering versus the inverse CM energy.

Fig. 3. Dispersion analysis of volume integrals

of phenomenological potentials for the α+12C

system.

Assuming the volume integrals determined are

unique, we used the calculated volume integrals for

dispersion analysis of the α+12C system. In order to

approximate the dependence of JW (E), we employed

“the schematic linear model” proposed in [2].

In the lower part of Fig. 3, we show (triangles) the

empirical values of JW (ECM) and (curve) the approx-
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imation of the energy-dependence of this quantity in

the schematic linear model. In the upper part are

shown the corresponding values for the volume inte-

grals JV (ECM), which were calculated by using the

dispersion relation.

One can see the imaginary part of potential, which

decreases sharply when the energy falls below the top

of the Coulomb barrier, and this decrease is accompa-

nied by a bell-shaped maximum of real part of poten-

tial. This is the same as the diagram of the dispersion

analysis for other systems. This anomaly in the be-

havior of the low energy of real and imaginary parts of

potential is characteristic for this analysis and relates

to “spurious” energy-dependence due to nonlocality

of the imaginary part of the potential. The values

found for the real and imaginary parts of the volume

integrals and also values of χ2/N (N is the number of

experimental points in a given angular distribution)

and cross sections are given in Table 1. It should be

noted that, as a rule, the analysis was performed by

using a constant experimental error of 10%. More-

over, the angular range in the analysis at energies

of 48.7, 54.1, 65 and 104 MeV was constrained from

above by a value of 100◦ in order to reduce the effect

of other mechanisms, such as elastic transfer at large

angles. This is the reason why the χ2/N value cal-

culated for the total angular range 48.7, 54.1, 65 and

104 MeV is so large.

Table 1. The parameters found for the α+12C system.

Elab./MeV −JV/(MeV·fm3) −JW /(MeV·fm3) χ2/N σ/mb

48.7 469.02 87.94 13.89 875.7

54.1 452.37 92.77 14.03 868.1

65 422.22 142.24 7.643 766.6

104 366.37 117.14 6.515 862.7

120 349.1 114.71 1.95 813.5

139 336.53 119.5 2.84 761.7

145 348.23 119.53 0.811 781.1

166 336.26 119.4 2.313 743.0

172.5 333.73 121.43 0.438 751.9

240 283.75 112.54 1.209 682.4

4 Conclusion

The nuclear Rainbow is a very good phenomenon

for finding the potential of the light heavy ions elas-

tic scattering. The basic of the problem for this phe-

nomenon in finding the correct potential is uncertain.

But this problem can be solved by some tests. One

of these is to use the dispersion relation between the

real and imaginary parts of potential. The dispersion

relation reproduced the energy dependence of the vol-

ume integrals of the real and imaginary parts of the

potential at the region of an “anomaly”. In this work,

this anomaly is simulated for α+12C scattering, and

it was shown that the imaginary part of the potential

decreases toward zero when E falls below the top of

the Coulomb barrier rapidly, while the real part of

the potential increases sharply.

The behavior of the imaginary part can be inter-

preted as inelastic channels that are decreased by the

Coulomb barrier effectively. By using the dispersion

relation, for this reason, |V | must have a bell-shaped

maximum in the same region.

It should be emphasized that the dispersion rela-

tion has a connection only with intrinsic energy de-

pendence, while the empirical local potentials result

by fitting the experimental data, which may include

“spurious” energy dependence due to nonlocality po-

tentials.

This study proves that the dispersion relation can

be applied as a test for selecting the correct potential

among the available potentials too.
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