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Abstract In this paper, the kinematic fitting with the Lagrange multiplier method has been studied for

BES0 experiment. First we introduce the Lagrange multiplier method and implement kinematic constraints.

Then we present the performance of the kinematic fitting algorithm. With the kinematic fitting, we can improve

the resolution of track parameters and reduce the background.
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1 Introduction

BES0 (Beijing Electron Spectrometer 0[1]) is a

powerfull facility for studying charmonium physics,

D-physics, spectroscopy of light hadrons and τ-

physics. In physics analysis, the kinematic fitting is

an important tool. It mainly uses the particle’s in-

formation in MDC (Main Drift Chamber) and EMC

(Electromagnetic Calorimeter).

In kinematic fitting, we use some of physics laws

to constraint the decay process, then we can get

better particle parameters. In BES0 offline soft-

ware [2], before using kinematic fitting, we can use

vertex fitting first to update the decay vertex and

track parameters. For example, considering the de-

cay chains, ψ(3770)→D0D0, where D0 decays to the

CP eigenstate K0
Sπ

0 and D0 decays to the hadronic

mode K−π+. There are several constraints that can

be applied: (1) the π+π− pair from K0
S decay must

come from a common space point(2×2−3 = 1 con-

straint); (2) the momentum vector of π+π− pair must

be aligned with the position vector of the decay vertex

relative to the interaction point(3−1=2 constraints).

The above constraints have been dealt with by de-

cay vertex reconstruction [3]. In the kinematic fit-

ting, we mainly use particle energy and momentum

information, such as (1) the mass of the γγ pair has

to be equal to the π0 mass(1 constraint); (2) energy

and momentum are conserved in the DD production

(4 constraints); and (3) the mass of K0
Sπ

0 has to be

equal to the mass of K−π+ (1 constraint). After us-

ing the general algorithm which will be introduced in

next section with such 9 constraints, their parameters

are forced to satisfy the constraints, thereby improv-

ing the mass and momentum resolution of the D0 and

the D0. These resolution improvements will translate

to a larger signal to background ratio and frequently

elevate marginal signals to statistical significant re-
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sults. The importance of kinematic fitting to data

analysis is demonstrated by its use in virtually all

modern high energy physics experiments.

2 General algorithm

In kinematic fitting,we use the Lagrange multi-

plier method [4] to deal with various types of con-

straints. Based on formulas in the applied fitting

theory 1 [5], we have developed the kinematic fit-

ting algorithm. The final equations which we used in

the kinematic fitting algorithm can be written as:

α = α0−Vα0
DTλ,

λ = VD(Dδα0 +d), (1)

Vα = Vα0
−Vα0

DTVDDVα0
,

where α represents the particle parameters after kine-

matic fitting, and α0 means the initial particle pa-

rameters before kinematic fitting. δα0 is the differ-

ence between α and αA, where αA is the expanding

point to the constraint equations. Vα0
is the error

matrix of initial particle parameters and Vα is the

updated error matrix. λ is called Lagrange multi-

pliers. VD = (DVα0
DT)

−1
is the m×m constraint

covariance matrix. D and d are used to linearize the

constraints equations. Different constraints have dif-

ferent expressions.

Finally, we get the χ2 expression:

χ2 = λTV −1
D λ = λT(Dδα0 +d). (2)

Note that the χ2 can be written as a sum of m distinct

terms, one for each constraint. It can be shown that

the new covariance matrix Vα has diagonal elements

that are smaller than the initial covariance matrix

Vα0
. In general, the nonlinearities of the constraint

equations require that the kinematic fitting procedure

be applied iteratively until satisfactory convergence is

achieved. Track parameters and their errors, covari-

ance matrices, fit information and other quantities

can be obtained after fitting.

3 Track parameter representation

For kinematic fitting, it is important to choose

a track representation that uses physically meaning-

ful quantities. We adopt the 4-parameter W format,

defined as α = (px,py,pz,E), the 4-momentum, in

the BES0 kinematic fitting software package. It is

straight-forward to transfer the parameters of neutral

tracks and their covariance to the W representation.

It has been noted that the W format also has enough

information to represent the general decays of parti-

cles.

3.1 Charged track representation

For charged track, 5-helix parameters are adopted

in MDC track fitting program. The relation of helix

and 4 momentum is quite simple:

α0 =


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




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p0x
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, (3)

where φ0 is the track direction polar angle, κ is the

radius of helix, λ is the track direction closest to the

z-axis point, Q is the particle charge, m is the mass

of particle. The corresponding Jacobian matrix JW

can be easily calculated. The 4-momentum covari-

ance matrix can be gotten from:

VW = JW ·Vhelix ·J
T
W . (4)

3.2 Neutral track representation

Neutrals are reconstructed in the calorimeter with

the position (φ,cosθ), an energy E, and a correspond-

ing 3×3 covariance matrix. Supposing the decay ver-

tex is fixed at the point of origin, the 4-momentum of

neutral tracks, e.g., photons, can be easily determined

by

p =
(

E sinθ cosφ E sinθ sinφ E cosθ E
)

.

The decay particles are not always produced from

the origin. The track parameters for neutrals have to

be recalculated as:
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, (5)

where −→x clus = (xclus,yclus,zclus) is the cluster hit posi-

tion in EMC that can be got by the EMC reconstruc-

tion, and −→x beam = (xbeam,ybeam,zbeam) is the interac-

tion position which can be determined from vertex

reconstruction. Since −→x clus and −→x beam are calculated

independently, there is no correlation between −→x clus

and −→x beam. According to the error propagation for-

mula, we have:

Vφ′,λ′ = J1 ·Vclus ·J
T
1 +J2 ·Vbeam ·JT

2 , (6)

where

J1 =
∂(φ′,λ′)

∂(−→x clus)
, J2 =

∂(φ′,λ′)

∂(−→x beam)
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and J1 = −J2, Vclus is the EMC cluster error matrix

and Vbeam is the beam vertex error matrix.

It is assumed that there is no correlation between

energy measurement and position measurement, The

final shower representation will be:



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φ′
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E
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


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 .

In the kinematic fitting, we use 4-momentum for-

mat:
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In the same way, the covariance matrix of 4-

momentum is deduced by J ·Vφ,λ,p ·J
T,where J is:

J =


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4 Applied kinematic constraints at

BES000

In this section, we will introduce some constraints

which are used in our implementation. For various

constraints, we write the linearized parameters D and

d.

Suppose that we start with α0 =
(

α01 α02 . . . α0n

)

and

V0α =




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,

where α = (px,py,pz,E) is a 4-momentum vector. Vα

is its covariance matrix.

4.1 Invariant mass constraint

The constraints are

d = E2−p2
x−p2

y−p2
z −m2

c = 0,

where mc that we constraint the invariant mass of sev-

eral tracks to be this value. The linearization yields

D =
(

−2px −2py −2pz 2E
)

.

In some sense, the mass constraint is most com-

plicated, because it is quadratic without any linear

terms. The mass constraint is one of the most com-

mon kinematic constraints, for example, π0/η→γγ.

4.2 Total energy constraint

The constraints are

d = E−Ec = 0 ,

where Ec that we constraint a particle’s energy to be

this value. The linearization yields

D =
(

0 0 0 1
)

.

The energy constraint is linear. In charm physics

analysis, it’s often used to reconstruct the beam-

constraint mass of single charm tag. For example,

in the decay of ψ(3770)→DD̄, each D meson carries

a constant energy (beam energy) in the rest frame of

ψ(3770).

4.3 Total momentum constraint

The constraint is

d =
√

p2
x +p2

y +p2
z −pc = 0 ,

where pc is that we constrain a particle’s momentum

to be this value. The linearization yields

D =
(

px/p py/p pz/p 0
)

.

As the mass constraint, the total momentum is a

nonlinear constraint. For example, in the study of

ψ(4030)→DD̄∗, the momentum of the direct daugh-

ter D is a constant. This constraint can also be ap-

plied in the decay of ψ(3770)→DD̄.

4.4 Three momentum constraints

The constraints are

d =









px−pcx

py −pcy

pz −pcz









= 0 .

The linearization yields

D =









1 0 0 0

0 1 0 0

0 0 1 0









.

The linear 3-momentum constraints are seldom used

in physics analysis, for example, to distinguish the

processes of J/ψ → pp̄, J/ψ → π+π− and J/ψ →
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K+K−. After the 3-momentum constraints fit, one

can check the total momentum distribution.

4.5 Four momentum constraints

Four momentum constraints are the most com-

mon analysis tools for most of the physics topics at

BES0. The constraints are

d =


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.

In most of the analyse of J/ψ and ψ(2S) physics,

the decay daughters are required to satisfying the

momentum-energy conversation. The 4-momentum

constraints are helpful to improve the momentum, en-

ergy and mass resolution, and also useful to suppress

background contaminations.

4.6 Equal mass constraint

In some analyse, for example, in ψ(3770) → DD̄

and J/ψ → γπ0π0 the D and π0 are reconstructed

by their decay modes. If we want to check the

signal/background linear shape without fixing their

mass to the nominal value, we may require the addi-

tional constraint mD = mD̄ and/or (mπ
0)1 = (mπ

0)2.

In another word, we want to add the constraint

d = (E2
1 −p2

1x−p2
1y−p2

1z)−(E2
2 −p2

2x−p2
2y −p2

2z) = 0.

The linearization yields

D1 =
(

−2p1x −2p1y −2p1z 2E1

)

,

D2 =
(

2p2x 2p2y 2p2z −2E2

)

,

where the D1 and D2 correspond to the derivatives

to the two sets of track parameters.

5 Physics performance

The kinematic fitting with the Lagrange multi-

plier method uses the MDC information for charged

tracks and EMC information for neutral particles

through different kinematic constraints to update the

track parameters including the energy, the momen-

tum and their resolutions.

There are two important variables to check the

kinematic fitting process: pull [6] and χ2. The pull

of the ith-track parameter is defined as:

(pull)
i
=

αi−α0i
√

(Vα0
)ii−(Vα)ii

. (8)

The resulting χ2 that is obtained with m constraints

is distributed like a standard χ2 with m degrees of

freedom, if Gaussian errors apply. Of course, since

the track errors are only approximately Gaussian,

the actual distribution will have more events in the

tail than predicted by Gaussian approximation. Still,

knowledge of the distribution allows one to define the

reasonable χ2 cuts.

5.1 J/ψ→ρ0π0

In the J/ψ→ ρ0π0 with ρ0 →π+π− and π0 →γγ,

because of the narrow width of the J/ψ peak, we

can constrain that all the tracks in the final state

should satisfy the four momentum constraints. An-

other constraint, namely the invariant mass of photon

pair equals the π0 mass, can be added.

5.1.1 Performance of kinematic constraints

Figure 1 shows the distribution of χ2 and the

probability of χ2 which is the cumulative distribu-

tion function of the χ2 variable. But the existence of

the photons made the problem more complicated, so

in the analysis of decay which contains gamma we did

some adjustment, and that could influence the final

result.

To check the kinematic fit, we draw the pull of the

helix parameters for charged tracks of π+.

In Fig. 1, we notice that the mean of the χ2 consis-

tency is 0.3083, which is not around 0.5 as the theory

expected. Because the probability of χ2 should be the

flat distribution in the range of (0,1). In Fig. 2, φ0 is

the track direction polar angle, κ is the radius of helix.

In the pull distribution of κ, the mean value is apart

from the 0 apparently. The main reason is that the

initial values of the parameters and their errors are

not very accurate. As mentioned in a Gaussian-sum

filter for vertex reconstruction [7]: The model is linear

and all random noise is Gaussian. In that case, the

Lagrange multiplier estimation is unbiased and has

minimum variance, residuals and standardized resid-

uals (pulls) of estimated quantities have Gaussian dis-

tributions, and the minimum of the objective function

obeys a χ2-distribution. Despite the fact that some of

the checked parameters distributions are not perfect,

the physics values we care about are worth trusted.

For non-linear models or non-Gaussian noise, it is still

the optimal linear estimator. The π0 mass distribu-
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tion is good according to the mean value and its error

compared with the EMC information read directly

from the reconstruction.

Fig. 1. χ2 distribution of four momentum con-

straints in Lagrange multiplier method (a);

Probability of χ2 (b), for J/ψ → ρ0π0 chan-

nel.

Fig. 2. The distribution of π+ pull in helix format.

Besides the four momentum constraints, we add

an invariant mass constraint in addition which re-

quires that the two photon’s invariant mass be equal

to the π0 mass. The degree of the freedom of the χ2

distribution should be 5.

5.1.2 The efficiency of kinematic fitting

Another important quantity which should be

studied is the efficiency of the kinematic fitting. First

of all, we use the decay J/ψ→ ρ0π0 with ρ0 →π+π−

and π0 →γγ to check the efficiency for 4-momentum

constraint and resonance constraint mentioned above.

Before the kinematic fitting is applied, we selected the

signals by PID, vertex fitting and other simple cuts

such as total tracks and charge. In the 50 thousand

Monte Carlo events, the number of events which pass

the preliminary selection criteria is N1 30887. Sec-

ondly, we defined the three types of efficiencies. The

number of events passing 4-constraint fit (4c) is N2

and 5c N3. The efficiencies are defined as ε1 =
N2

N1

,

ε2 =
N3

N1

, ε3 =
N3

N2

. In the kinematic fitting, we can

get the χ2 value for each fitting, the distribution of

χ2 is dependent on the degree of the freedom of the

total constraints in theory. From Fig. 3, the efficiency

is dependent on χ2 cut. It is easy to understand that

the tight cut can reduce the efficiency. But we no-

ticed that even if the χ2 cut is loosely enough, the

efficiency can not reach 100%. The reasons which

affect the efficiency could be:

Fig. 3. Efficiencies vs χ2 (a); resolution of π0

mass vs χ2 (b).
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1) the χ2 cut, but loose cut also affects the reso-

lution of results;

2) the error matrix of track parameters also can

influence the fitting, for charged tracks, we need the

accurate MDC kalman tracking information [8];

3) because of the asymmetry of photon energy de-

posit shape, it can not be treated as Gaussian. The

dynamic error should be introduced.

Considering the resolution and efficiency together,

the 40 for χ2 cut is recommended.

5.2 The parameters improvement using kine-

matic fitting

After using the kinematic fitting, we not only

Fig. 4. The distribution of π0 mass before kine-

matic fitting (a); the distrubition of π0 mass

after kinematic fitting (b).

reduce the background, but also could revise the track

parameters to get better resolutions. We compare

the π0 mass before kinematic fitting with the mass

after kinematic fitting in the decay of J/ψ→ ρ0π0, as

shown in Fig. 4.

Figure 4 shows the mean value of the invariant

mass of two gammas from π0 is far from the real value

and the resolution is about 10 MeV. After kinematic

fitting, the mean value is close to the PDG value and

the resolution changes to 6.7 MeV. Through kine-

matic fitting, we get more accurate parameter value

and better resolution.

6 Summary

The Lagrange multiplier method has been imple-

mented for the kinematic fitting of the BES0 offline

software. It has been validated with Monte Carlo

simulation, with charged particles and neutral parti-

cles in various constraints. Through these tests, the

particle parameters’ value and resolution have been

improved after kinematic fitting. From Fig. 4, we can

see that the four momentum constraints can clearly

improve the resolution of π0 mass and the mean value

of mass distribution. In the foundation of parameters

with Gaussian error, the pull of parameters in kine-

matic fitting is (0,1) normal Gaussian distribution.

By adjusting the χ2 cut, we can change the purity

and efficiency. So we need to choose a proper cut de-

pending on different situations. And we also should

adjust the error matrix element to make the pulls

closer to the normal distribution. For the constraints

with error, the Lagrange multiplier method can not

handle such problems, especially when the error dis-

tribution is not Gaussian. The next step is to use the

Kalman filter method [9] to deal with it, and also can

deal with the missing parameter situation.
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