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kth-order antibunching effect for a new kind of

excited even and odd q-coherent states

JIANG Jun-Qin(ôd�)1)

Department of Physics, Guangdong Institute of Education, Guangzhou 510303, China

Abstract A new kind of excited even q-coherent states (a−1
q )m |α〉e

q
and excited odd q-coherent states

(a−1
q )m |α〉oq is constructed by acting with inverse boson operators on the even and odd q-coherent states.

The m dependence of the kth-order antibunching effect is numerically studied for k = 2, 3, 4, 5©It is shown

that the kth-order antibunching effect enhances as m increases. The larger k, the quicker the antibunching

effect enhances.
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1 Introduction

The coherent states of quantum algebra (q-

coherent states) have attracted a lot of attention

due to their possible applications in various branches

of physics and mathematical physics©Since Bieden-

harn introduced the quantum group to the coherent

states [1], q-coherent states (q-CSs) have been studied

by many authors [2–6].

One of the most interesting subjects in quantum

optics is to construct various quantum states based

on the principles of quantum mechanics and to inves-

tigate their nonclassical properties. Since a method

of generating new quantum states was introduced

in 1991 by acting with boson creation operators a+

on a coherent state [7], a series of excited states of

light fields have been constructed and investigated

[8–12]. In 2002, we introduced this method to the

even and odd q-CSs, generated the excited even q-

CSs(a+
q )m |α〉

e

q
and the excited odd q-CSs(a+

q )m |α〉
o

q
,

and investigated their nonclassical properties [13, 14].

Recently, one pays attention to another method

of generating new quantum states by acting with in-

verse boson annihilation operators a−1 on some typ-

ical quantum states [15, 16]. In this paper, we apply

the new method to even and odd q-CSs. The remain-

ing part of the paper is organized as follows: first we

generate a new kind of excited even q-CSs(a−1
q )m |α〉

e

q

and excited odd q-CSs(a−1
q )m |α〉

o

q
; second we study

the 2nd order antibunching effect and compare the

numerical result with the old-style excited even q-

CSs(a+
q )m |α〉e

q
and excited odd q-CSs(a+

q )m |α〉o
q

[13];

third we investigate the kth-order antibunching effect

for k = 3, 4, 5; and finally a simple discussion is given.

2 A new kind of excited even and odd

q-coherent states

In the Fock representation the even and odd q-CSs

can be expressed as

|α〉e
q
=

∞
∑

n=0

α2n

√

[2n]q!
|2n〉

q
, (1)

|α〉
o

q
=

∞
∑

n=0

α2n+1

√

[2n+1]q!
|2n+1〉

q
, (2)

where α = reiθ is a complex parameter, [n]q and [n]q!

are defined by

[n]q = (qn−q−n)/(q−q−1), (3)

[n]q ! = [n]q[n−1]q · · · [1]q . (4)

In the following we consider only states with 0 <

q < 1 (because [n]q−1 = [n]q). For q → 1, Eq. (1) and
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Eq. (2) reduce to the ordinary even and odd coherent

states.

Now we construct a new kind of excited even and

odd q-CSs by acting repeatedly with an inverse bo-

son q-annihilation operator a−1
q on the even and odd

q-CSs

|α,m〉
e

q
= Ce

m(a−1
q )m |α〉

e

q
=

Ce
m

∞
∑

n=0

α2n

√

[2n+m]q!
|2n+m〉

q
, (5)

|α,m〉o
q

= Co
m(a−1

q )m |α〉o
q
=

Co
m

∞
∑

n=0

α2n+1

√

[2n+1+m]q!
|2n+1+m〉

q
. (6)

The q-annihilation operator aq, q-creation opera-

tor a+
q and q-number operator Nq satisfy the commu-

tation relations

aqa
+
q −qa+

q aq = q−Nq , (7)

[Nq, aq] =−aq, [Nq, a+
q ] = a+

q . (8)

To keep the parity, in what follows we consider

m = 2, 4, 6, · · ·. For m = 0, Eq. (5) and Eq. (6)

reduce to Eq. (1) and Eq. (2)©Ce
m and Co

m are nor-

malization constants

(Ce
m)

−2
=

∞
∑

n=0

(r2)2n

[2n+m]q!
, (9)

(Co
m)

−2
=

∞
∑

n=0

(r2)2n+1

[2n+1+m]q!
. (10)

3 kth-order antibunching effect

3.1 Second order antibunching effect

The 2nd order correlation function of the q-light

fields is defined by [3, 13]

g(2)(0)≡ q

〈

a+2
q a2

q

〉

q

/∣

∣

∣q

〈

a+
q aq

〉

q

∣

∣

∣

2

.

Whenever g(2)(0) < 1, the q-light fields exhibit a

2nd order antibunching effect, called ‘antibunching

effect’ for short.

For |α,m〉e
q

and |α,m〉o
q

we obtain the 2nd order

correlation functions

g(2)
e (0) = e

q〈α,m|a+2
q a2

q |α,m〉e
q

/

〈Ne〉
2, (11)

g(2)
o (0) = o

q〈α,m|a+2
q a2

q |α,m〉
o

q

/

〈No〉
2
, (12)

where

〈Ne〉 = e
q 〈α,m|a+

q aq |α,m〉
e

q
=

(Ce
m)

2
∞

∑

n=0

(r2)2n

[2n+m]q!
× [2n+m]q , (13)

〈No〉 = o
q 〈α,m|a+

q aq |α,m〉
o

q
=

(Co
m)

2
∞

∑

n=0

(r2)2n+1

[2n+1+m]q!
× [2n+1+m]q ,

(14)

e
q 〈α,m|a+2

q a2
q |α,m〉e

q
= (Ce

m)2
∞

∑

n=0

(r2)2n

[2n+m]q!
×

[2n−1+m]q × [2n+m]q , (15)

o
q 〈α,m|a+2

q a2
q |α,m〉

o

q
= (Co

m)
2

∞
∑

n=0

(r2)2n+1

[2n+1+m]q!
×

[2n+m]q × [2n+1+m]q . (16)

From Eq. (3), Eq. (4), and Eqs. (9)–(16), we can

obtain g(2)
e (0) and g(2)

o (0) as functions of x(= |α|2 =

r2) for m = 0, 2, 4, 6, 8, · · · and q = 0.1, 0.2, 0.3,

0.4, · · · , 0.9. Fig. 1 and Fig. 2 give the results of

q = 0.9 and m = 0, 2, 4. Fig. 3 and Fig. 4 give the

results of q = 0.3 and m = 0, 2, 4.

When the q is close to 1 (e.g. q = 0.9), as can

be seen, for large x(= |α|2 = r2), the q-light fields

don’t exhibit an antibunching effect. For small x, the

Fig. 1. g
(2)
e (0) versus m and x(= r2) for q =0.9.

Fig. 2. g
(2)
o (0) versus m and x(= r2) for q =0.9.
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excited even q-CSs (m 6= 0) exhibit an antibunching

effect but the unexcited even q-CSs (m = 0) exhibit

a strong bunching effect; the antibunching effect is

weaker in the excited odd q-CSs (m 6= 0) than in the

unexcited odd q-CSs (m = 0). This is analogous to

the old-style excited even and odd q-CSs [13].

For small q, far from 1 (e.g. q=0.3), in a wide

region of large x, the antibunching effect is greatly

enhanced as m increases in the excited even q-

CSs(a−1
q )m |α〉

e

q
as well as in the excited odd q-

CSs(a−1
q )m |α〉o

q
(see Fig. 3 and Fig. 4). This

differs greatly from the old-style excited even q-

CSs(a+
q )m |α〉

e

q
and excited odd q-CSs(a+

q )m |α〉
o

q
[13],

in which the antibunching effect is independent of m

for large x.

Fig. 3. g
(2)
e (0) versus m and x(= r2) for q = 0.3.

Fig. 4. g
(2)
o (0) versus m and x(= r2) for q = 0.3.

3.2 Higher order antibunching effect

The kth-order correlation function of the q-light

fields is defined by [4]

g(k)(0)≡ q

〈

a+k
q ak

q

〉

q

/∣

∣

∣q

〈

a+
q aq

〉

q

∣

∣

∣

k

, k = 3, 4, 5, · · · .

Whenever g(k)(0) < 1 the q-light fields exhibit a

kth-order antibunching effect.

For |α,m〉
e

q
and |α,m〉

o

q
we obtain the kth-order

correlation functions as

g(k)
e (0) = e

q〈α,m|a+k
q ak

q |α,m〉e
q

/

〈Ne〉
k, (17)

g(k)
o (0) = o

q〈α,m|a+k
q ak

q |α,m〉
o

q

/

〈No〉
k
, (18)

where

e
q 〈α,m|a+k

q ak
q |α,m〉

e

q
=

(Ce
m)

2
∞

∑

n=0

(r2)2n

[2n+m]q!

k
∏

j=1

[2n+m+1−j]q, (19)

o
q 〈α,m|a+k

q ak
q |α,m〉

o

q
=

(Co
m)2

∞
∑

n=0

(r2)2n+1

[2n+1+m]q!

k
∏

j=1

[2n+m+2−j]q . (20)

From Eq. (3), Eq. (4), Eq. (9), Eq. (10), Eq. (13),

Eq. (14), and Eq. (17)–Eq. (20), we obtain g(k)
e (0) and

g(k)
o (0) as functions of x(= |α|2 = r2) for k = 3, 4, 5,

· · · , m = 0, 2, 4, 6, · · · and q = 0.1, 0.2, 0.3, 0.4, · · · ,

0.9. Fig. 5 and Fig. 6 give the results for k=3, q=0.3

and m=0, 2, 4; Fig. 7 and Fig. 8 give the results for

k = 4, q = 0.3 and m = 0, 2, 4; Fig. 9 and Fig. 10 give

the results for k = 5, q = 0.3 and m = 0, 2, 4.

Fig. 5. g
(3)
e (0) versus m and x(= r2) for q =0.3.

Fig. 6. g
(3)
o (0) versus m and x(= r2) for q =0.3.
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For large q (e.g. q = 0.9) the results are similar to

those of Fig. 1 and Fig. 2.

Fig. 7. g
(4)
e (0) versus m and x(= r2) for q = 0.3.

Fig. 8. g
(4)
o (0) versus m and x(= r2) for q = 0.3.

Fig. 9. g
(5)
e (0) versus m and x(= r2) for q = 0.3.

Fig. 10. g
(5)
o (0) versus m and x(= r2) for q = 0.3.

4 Conclusion

A new kind of excited even q-CSs(a−1
q )m |α〉

e

q
and

excited odd q-CSs(a−1
q )m |α〉o

q
is constructed by act-

ing with the inverse boson operators on the even and

odd q-CSs. The m dependence of the kth-order anti-

bunching effect is numerically studied for k = 2, 3, 4,

5©The main results obtained are summarized in the

following.

(a) For a given q and m = 0, g(3)
o (0) =

g(2)
o (0), g(3)

e (0) = g(2)
e (0), g(5)

o (0) = g(4)
o (0), g(5)

e (0) =

g(4)
e (0), · · · ; for m 6=0, g(3)

o (0) 6= g(2)
o (0), g(3)

e (0) 6=

g(2)
e (0), g(5)

o (0) 6= g(4)
o (0), g(5)

e (0) 6= g(4)
e (0), · · · .

(b) For q close to 1 (e.g. q = 0.9), the kth-order an-

tibunching effect merely appears in a narrow region

of small x, similar to the old-style excited even q-

CSs(a+
q )m |α〉

e

q
and excited odd q-CSs(a+

q )m |α〉
o

q
[13].

(c) For small q far from 1 (e.g. q = 0.3) and

small x, the excited even q-CSs (m 6=0) exhibit a

kth-order antibunching effect but the unexcited even

q-CSs (m = 0) don’t. The 2nd-order antibunching ef-

fect is weaker in the excited odd q-CSs (m 6= 0) than

in the unexcited odd q-CSs (m = 0), but the higher-

order antibunching effect is not.

(d) For small q far from 1, in a wide region of

large x (e.g. x > 0.6 for q = 0.3) in the excited even q-

CSs(a−1
q )m |α〉

e

q
and the excited odd q-CSs(a−1

q )m |α〉
o

q
,

the kth-order antibunching effect (k = 2, 3, 4, 5) is

enhanced as m increases. The larger k is, the quicker

the antibunching effect is enhanced.
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