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Spin-1/2 relativistic particle in a magnetic

field in NC phase space *
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Abstract This work provides an accurate study of the spin-1/2 relativistic particle in a magnetic field in NC

phase space. By detailed calculation we find that the Dirac equation of the relativistic particle in a magnetic

field in noncommutative space has similar behaviour to what happens in the Landau problem in commutative

space even if an exact map does not exist. By solving the Dirac equation in NC phase space, we not only obtain

the energy level of the spin-1/2 relativistic particle in a magnetic field in NC phase space but also explicitly

offer some additional terms related to the momentum-momentum non-commutativity.
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1 Introduction

There are many papers devoted to the study of

various aspects of quantum mechanics in NC space

with usual time coordinate. For example, string the-

ory in nontrivial backgrounds was studied in Ref. [1]

and noncommutative field theories related to M-

theory compactification was studied in Ref. [2]. Be-

sides these, Ref. [3] supported that inclusion of

noncommutativity in quantum field theory can be

achieved in two different ways: via Moyal ?-product

on the space of ordinary functions, or defining the

field theory on a coordinate operator space which is

intrinsically noncommutative. Refs. [4–10] declared

that a simple insight on the role of noncommuta-

tivity in field theory can be obtained by studying

the one particle sector, which prompted an interest

in the study of noncommutative quantum mechanics

(NCQM). Refs. [11–20] studied the topological phase

and energy level AC effects in NC phase, which paid

some attention to two-dimensional NCQM and its re-

lation to the Landau problem. And Ref. [21] showed

the equation of motion of a particle in a constant

magnetic field and in the lowest Landau level. How-

ever, almost no job related to NC phase space has

been done until now.

In this paper we will do something related to NC

phase space. Especially, we will focus on the spin-1/2

relativistic particle and study it in a magnetic field

in NC phase space. To be clear, we plan to organize

the work as follows: in the next part we discuss the

Dirac equation of the spin-1/2 relativistic particle in

a magnetic field in commutative space. In Section 3

we study the Dirac equation in NC space. In Section

4, by solving the Dirac equation we deduce the energy

level of the particle in a magnetic field in NC phase

space. A summary is given in the last section.

2 Dirac equation of the charged parti-

cle in magnetic field

In this section we mainly study the charged parti-

cle in magnetic field in relativistic circumstances. As

we all know that in the stationary state Dirac equa-

tion of the charged particle in commutative space can

be defined by the following [22],

[

c ~α ·
(

~p+
e

c
~A
)

+βmc2
]

ψ=Eψ, (1)
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where

ψ(~r) =

(

ψa (~r)

ψb (~r)

)

, ~α =

(

0 ~σ

~σ 0

)

, β=

(

I 0

0 −I

)

. (2)

A straightforward calculation leads to the following

two simultaneous equations

c~σ ·
(

~p+
e

c
~A
)

ψb(~r ) = (E−mc2)ψa(~r ) , (3)

c~σ ·
(

~p+
e

c
~A
)

ψa(~r ) = (E+mc2)ψb(~r ) . (4)

Here, in Eq. (4) ψb(~r ) is the small component of

the wave function, which tends to be zero in the non-

relativistic limit. Now inserting Eq. (4) into Eq. (3),

we can have
[

c~σ ·
(

~p+
e

c
~A
)][

c~σ ·
(

~p+
e

c
~A
)]

ψa(~r ) =

(E2
−m2c4)ψa(~r ) , (5)

in which ~σ is the Pauli matrices and the large compo-

nent wave function ψa(~r ) is a two component spinor,

i.e.

ψa(~r ) =

(

u1

u2

)

. (6)

Since

A=
~B×~r

2
, (7)

we can define w1 as

w1 =
eB

2 mc
. (8)

At this point, in two dimensions with some simple

rearrangement and use of familiar properties of the

spin matrices we have

c2[(p2
x +p2

y)+m
2w2

1(x
2 +y2)+2mw1Lz +

iσz(pxpy −pypx)+iσzm
2w2

1(xy−yx)+

2σzm~w]

(

u1

u2

)

= (E2
−m2c4)

(

u1

u2

)

. (9)

Moreover, in commutative space, by straightforward

calculation we obtain the following equation for a par-

ticle with spin-
1

2

c2[(p2
x +p2

y)+m
2w2(x2 +y2)+2mwLz]u1 =

(E2
−m2c4−2mc2~w)u1 (10)

and also the equation for an anti-particle with spin-
1

2

c2[(p2
x +p2

y)+m
2w2(x2 +y2)+2mwLz]u2 =

(E2
−m2c4 +2mc2~w)u2 . (11)

These equations are similar to what happens in the

Landau problem and is equivalent to a two dimen-

sional relativistic oscillator with additional spin-orbit

terms. And the equations have a constant of energy

with a different sign for particles and antiparticles.

Thus, the energy eigenvalues in both Eqs. (10) and

(11) are given by

E2
nxnym`

= 2 mc2~w1(nx +ny +1)+

4 mc2w1

(

m`~

2
±

~

2

)

+m2c4 . (12)

3 Energy level of the Dirac equation

in NC space

This section provides a study of the Dirac equa-

tion in NC space. As is known in NC space the co-

ordinate x̂i and momentum p̂i operators satisfy the

following commutation relations

[x̂i, x̂j ] = iθij , [p̂i, p̂j ] = 0, [x̂i, p̂j ] = i~δij . (13)

By replacing the normal product with a star product,

the Schrödinger equation in commuting space changes

to the Schrödinger equation in NC space which reads

H(p,x)?ψ(x) =Eψ(x) (14)

where the Moyal-Weyl (or star) product between the

two functions is

(f ?g)(x) = e
i

2
Θij∂xi

∂xj f(xi)g(xj) =

f(x)g(x)+
i

2
Θij ∂i f ∂j g

∣

∣

xi=xj
+O (θ2) , (15)

in which f(x) and g(x) are two arbitrary functions.

Instead of solving the NC Schrödinger equation by us-

ing the star product procedure, a Bopp’s shift method

will be used in this paper. That is, we replace the star

product in Schrödinger equation with the usual prod-

uct together with a Bopp’s shift

x̂i =xi−
1

2~
θijpj , p̂i = pi . (16)

Then the Schrödinger equation can be solved in the

commuting space, and the non-commutative proper-

ties can be realized by the θ related terms.

It is known that in noncommutative space the

Dirac equation can be described by the following

equation
[

c~α ·
(

~p+
e

c
~A
)

+βmc2
]

?ψ=Eψ . (17)

And in NC space the large component wave function
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ψa(~r ) in the Dirac Eq. (5) can satisfy the following

[

c~σ ·
(

~p+
e

c
~A
)][

c~σ ·
(

~p+
e

c
~A
)]

?ψa(~r ) =

(E2
−m2c4)ψa(~r ) , (18)

i.e.

c2[(p2
x +p2

y)+m
2w2

1(x
2 +y2)+2mw1Lz +

iσzm
2w2

1(xy−yx)+2σzm~w]?ψa(~r ) =

(E2
−m2c4)ψa(~r ) . (19)

Instead of solving the NC Dirac equation by using

the star product, an equivalent method will be used

in this paper. In other words, we replace the star

product in Dirac equation with the usual product by

shifting NC coordinates with a Bopp’s shift , i.e.,

c2[(p̂2
x + p̂2

y)+m
2w2

1(x̂
2 + ŷ2)+2mw1L̂z +

iσzm
2w2

1(x̂ŷ− ŷx̂)+2σzm~w]

(

u1

u2

)

=

(E2
−m2c4)

(

u1

u2

)

. (20)

Thus, in the two dimensions (2+1 dimensional space-

time) Eq. (16) changes to

x̂=x−
1

2~
θpy, ŷ= y+

1

2~
θpx. p̂x = px, p̂y = py . (21)

Now inserting Eq. (21) into Eq. (20), we have

c2

{

(

p2
x +p2

y

)

+m2ω2
1

[

(

x−
1

2~
θpy

)2

+

(

y+
1

2~
θpx

)2
]

+2mω1

[(

x−
1

2~
θpy

)

py−

(

y+
1

2~
θpx

)

px

]

+iσzm
2ω2

1(x̂ŷ− ŷx̂)+

2σzm~ω1]

}(

u1

u2

)

= (E2
−m2c4)

(

u1

u2

)

. (22)

After a straightforward calculation, we can get not

only the Dirac equation in a constant magnetic field

in NC space for a particle with spin-
1

2

c2

[

(

1−
mω1θ

2~

)2

(p2
x +p2

y)+m
2ω2

1(x
2 +y2)−

m2ω2
1θ

~
(Lz +~)+2mω1(Lz +~)

]

u1 =

(E2
−m2c4)u1 (23)

but also the equation for an anti-particle with spin-
1

2

c2

[

(

1−
mω1θ

2~

)2

(p2
x +p2

y)+m
2ω2

1(x
2 +y2)−

m2ω2
1θ

~
(Lz−~)+2mω1(Lz −~)

]

u2 =

(E2
−m2c4)u2. (24)

Thus, the energy eigenvalues in Eq. (23) and Eq. (24)

are given by

E2
nxnym`

= 2 mc2~ω̃1(nx +ny +1)−

m2c2ω2
1θ(m`±~)+4 mc2ω1

(

m`~

2
±

~

2

)

+m2c4 (25)

where

ω̃1 =ω1

(

1−
mω1θ

2~

)

. (26)

Here the energy level E2
nxnym`

represents the non-

commutativity for space. Now we can see when θ= 0,

E2
nxnym`

( in Eq. (25)) in NC space will be E2
nxnym`

(in Eq. (12)) in commutative space.

4 Energy level of the Dirac equation

for a particle in a magnetic field in

NC phase space

Now we are in the position to discuss the en-

ergy level of the Dirac equation mainly in NC

phase space. In fact, when both space-space and

momentum-momentum non-commutating are consid-

ered, we mean we are studying the problem in NC

phase space just as what the Bose-Einstein statistics

in non-commutative quantum mechanics required. As

known in NC phase space the commutation relations

in Eq. (13) should be replaced with

[x̂i, x̂j ] = iθij , [p̂i, p̂j ] = iθ̄ij , [x̂i, p̂j ] = i~δij . (27)

And in NC phase space the large component wave

function ψa(~r ) in the Dirac Eq. (5) should satisfy the
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following
[

c~σ ·
(

~p+
e

c
~A
)][

c~σ ·
(

~p+
e

c
~A
)]

∗ψa(~r ) =

(E2
−m2c4)ψa(~r ) (28)

where the star product reads the following [18]

(f ∗g)(x,p) = e
i

2α2
θij ∂x

i ∂x
j + i

2α2
θ̄ij ∂p

i
∂p

j f(x,p)g(x,p) =

f(x,p)g(x,p)+
i

2α2
θij ∂x

i f ∂x

j g
∣

∣

xi=xj
+

i

2α2
θ̄ij ∂p

i f ∂p

j g
∣

∣

pi=pj
+O(θ2) , (29)

in which O (θ2) stands for the second and higher or-

der terms of θ and θ̄. In order to replace the star

product in Schrödinger equation and Dirac equation

in NC phase space we need a generalized Bopp’s

shift [19]

xµ →αxi−
1

2α~
θµνpν , pµ →αpµ +

1

2α~
θ̄µνxν , (30)

which is the partner of shift in Eq. (16) in NC space.

At this point, we can see the Dirac equation after the

shift is similar to that in NC space, but the star prod-

uct and the shifts are defined in Eq. (29) and Eq. (30)

individually.

Furthermore, in the two dimensions(2+1 dimen-

sional space-time) Eq. (30) changes to

x̂ = αx−
1

2α~
θpy, ŷ=αy+

1

2α~
θpx ,

p̂x = αpx +
1

2α~
θ̄y, p̂y =αpy−

1

2α~
θ̄x . (31)

And in NC phase space the Dirac equation reads

c2[(p̂2
x + p̂2

y)+m
2w2

1(x̂
2 + ŷ2)+2mw1L̂z +

iσz(p̂xp̂y − p̂yp̂x)+iσzm
2w2

1(x̂ŷ− ŷx̂)+

2σzm~w]

(

u1

u2

)

= (E2
−m2c4)

(

u1

u2

)

. (32)

Inserting Eq. (31) into Eq. (32), we have

c2

{

(

αpx +
1

2α~
θ̄y

)2

+

(

αpy −
1

2α~
θ̄x

)2

+m2ω2
1

[

(

αx−
1

2α~
θpy

)2

+

(

αy+
1

2α~
θpx

)2
]

+

2mω1

[(

αx−
1

2α~
θpy

)(

αpy −
1

2α~
θ̄x

)

−

(

αy+
1

2α~
θpx

)(

αpx +
1

2α~
θ̄y

)]

−

σz θ̄−σzm
2ω2

1θ+2σzmω1~

}(

u1

u2

)

= (E2
−m2c4)

(

u1

u2

)

. (33)

After a straightforward calculation, we get both the

Dirac equation in a constant magnetic field in NC

phase space for a particle with spin-
1

2

c2

[

(

α−
mω1θ

2α~

)2
(

p2
x +p2

y

)

+

(

α−
θ̄

2α~mω1

)2

×

m2ω2
1 (x2 +y2)−

θ̄+m2ω2
1θ

~
(Lz +~)+

2mω1(Lz +~)

]

u1 = (E2
−m2c4)u1 , (34)

and the equation for an anti-particle with spin-
1

2

c2

[

(

α−
mω1θ

2α~

)2
(

p2
x +p2

y

)

+

(

α−
θ̄

2α~mω1

)2

×

m2ω2
1(x

2 +y2)−
θ̄+m2ω2

1θ

~
(Lz −~)+

2mω1(Lz −~)

]

u1 = (E2
−m2c4)u1. (35)

Thus, the energy eigenvalues are given by

E2
nxnym`

= 2 mc2~Ω1(nx +ny +1)−

(c2θ̄+m2c2ω2
1θ)(m`±~)+

4mc2ω1

(

m`~

2
±

~

2

)

+m2c4 (36)

where

Ω1 =ω1

(

1−
mω1θ

2~
−

θ̄

2~mω1

)

. (37)

Here the energy level E2
nxnym`

represents the non-

commutativity for both space and momentum. In the

two dimensional non-commutative plane, θ̄ij = θ̄εij ,

and the two NC parameters θ and θ̄ are related by

θ̄=4α2
~

2(1−α2)/θ [6]. When α= 1, θ̄ij =0, and the

E2
nxnym`

(in Eq. (36)) in NC phase space will change

to E2
nxnym`

(in Eq. (25)) in NC space.

5 Summary

To be brief, we have provided a detailed but not
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tedious study of the energy level of the Dirac equa-

tion for a particle in a constant magnetic field in NC

phase space. With full and accurate calculation we

conclude that the known similarity between an oscil-

lator in a noncommutative phase space and a particle

in a constant magnetic field can be extended to a

relativistic motion. The method employed in this pa-

per can also be applied to other quantum mechanics

problems in NC space, which will be reported in our

further studies.
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