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Non-commutative phase space and

its space-time symmetry *
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Abstract First a description of 2+1 dimensional non-commutative (NC) phase space is presented, and then

we find that in this formulation the generalized Bopp’s shift has a symmetric representation and one can easily

and straightforwardly define the star product on NC phase space. Then we define non-commutative Lorentz

transformations both on NC space and NC phase space. We also discuss the Poincare symmetry. Finally we

point out that our NC phase space formulation and the NC Lorentz transformations are applicable to any even

dimensional NC space and NC phase space.
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1 Introduction

In recent years there has been an increasing inter-

est in the study of physics on non-commutative space,

because the effects of the space non-commutativity

may become significant in extreme situations such as

at the string scale or at the TeV and even higher

energy levels. There are many papers devoted to

the study of various aspects of the quantum field

theory and quantum mechanics on NC space, where

space-space is non-commuting, but the momentum-

momentum is commuting, or on NC phase space,

where both space-space and momentum-momentum

are non-commuting, for references see Refs. [1–5]. Al-

though quantum theories on NC space and NC phase

space have been extensively studied in the literature,

the description of NC phase space is far from com-

plete, for example, it is not easy to define the star

product on NC phase space in the formulations of

Refs. [6, 7]. Other important issues we want to discuss

are the space-time symmetries of the NC space and

NC phase space. As we know, the Lorentz symme-

try plays a central role in any realistic quantum field

theory. There are different approaches in the formu-

lations of Lorentz and Poincare symmetries on NC

space, for references see Refs. [8–10]. Ref. [8] stud-

ied Lorentz transformation on NC space and claimed

that the NC gauge theories are invariant under the

NC Lorentz transformations. Because of the singu-

larity of matrix θij the NC Lorentz transformation

in Ref. [8] may not be applicable for the 3+1 dimen-

sional NC space. Also there are no discussions about

the Lorentz transformation on NC phase space in the

literature.

In this paper, we will give a description of NC

phase space in 2+1 dimensions, where the star prod-

uct can be easily defined. On 2+1 dimensional space-

time we extend the results of Ref. [8] to the NC phase

space, and we find that our formulation is applicable

to any even space dimensions.

This paper is organized as follows: in Section 2

we present a description of NC phase space on 2+1

dimensions. In Section 3 we discuss NC Lorentz and

Poincare transformations both on NC space and NC

phase space. Conclusion remarks are given in the last

section.
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2 The description of NC phase space

On NC space, the NC algebra is,

[x̂µ, x̂ν ] = iθµν , [x̂µ, p̂ν ] = i~δµν , [p̂µ, p̂ν ] = 0 , (1)

where the Greek indices µ and ν run from 0 to 2.

In order not to spoil unitarity [11, 12] and physical

casuality [13], one needs to set θ0µ = 0; in two dimen-

sions the constant anti-symmetric matrix element θij

can be written as θij = εijθ, and θ is related to the

space-space non-commutativity.

Non-commutative field theory is constructed from

commutative field theory by replacing, in the action,

the usual multiplication product among fields with

the star product among fields. The star product be-

tween two fields is defined as

(f ∗g)(x) = f(x)e
i

2

←−

∂µθµν
−→

∂νg(x) =

f(x)g(x)+
i

2
θµν ∂µ f ∂ν g+O(θ2). (2)

This star product can be replaced by a shift which is

called Bopp’s shift

x̂µ =xµ−
1

2
θµνp

ν , p̂µ = pµ , (3)

where xµ and pν are coordinates and momenta on

commuting space-time. After applying this shift, the

effect caused by space-space non-commutativity can

be calculated in the commuting space.

The Bose-Einstein statistics on non-commutative

quantum mechanics requires both space-space and

momentum-momentum non-commutativity [7]. In

the following we present our formulation to NC phase

space. On NC phase space the NC algebra reads,

[x̂µ, x̂ν ] = iθµν , [x̂µ, p̂µ] = i~δµν , [p̂µ, p̂ν ] = iθ̄µν . (4)

On NC phase space we set also θ̄0µ = 0, θ̄µν is a very

small anti-symmetric matrix element, it reflects the

non-commutativity of the momenta, and θ̄ij = εij θ̄.

From Eq. (4) we obtain a generalized Bopp’s shift

[6] as

x̂µ =αxµ−
1

2~α
θµνp

ν , (5)

p̂µ =αpµ +
1

2~α
θ̄µνx

ν , (6)

where α = 1−
θθ̄

8~2
= 1+O(θ2). Hereafter we choose

α= 1. It is easy to check that the above generalized

Bopp’s shift is consistent with the algebraic relation

(4). Then the star product on NC phase space can

be easily defined as

(f ∗g)(x) = f(x,p)e
i

2

←−

∂x

µ
θµν
−→

∂x

ν
+ i

2

←−

∂p

µ
θ̄µν
−→

∂p

νg(x,p) =

f(x,p)g(x,p)+
i

2
θµν ∂x

µ f(x,p)∂x

ν g(x,p)+

i

2
θ̄µν ∂p

µ f(x,p)∂p

ν g(x,p)+O(θ2). (7)

In NC quantum mechanics and NC quantum field the-

ory, the star product between two fields on NC phase

space can be replaced by the generalized Bopp’s shift

(5) for coordinates and (6) for momenta.

We would like to stress that our formulation above

is well defined on 2-dimensional NC phase space, and

it can be generalized only to any even dimensional

case.

3 Lorentz transformation on non-

commutative phase space

Let’s first discuss the Lorentz transformation on

NC space-time [8]. In an analogous way as in commu-

tative space-time one could introduce, on NC space,

a NC Lorentz transformation as x̂µ =Λν
µx̂ν . But this

kind of definition of the Lorentz transformation is not

consistent with the algebra (1), since it would require

that θµν transforms as Λα
µΛ

β
νδαβ . This makes little

sense, because θµν is a constant and does not change

under Lorentz transformation.

From the Bopp’s shift (3) on NC space one finds

that

xµ = x̂µ +
1

2~
θµν p̂

ν , pµ = p̂µ . (8)

On commuting space-time we can define a Lorentz

transformation as follows

x′µ =Λν
µxν , (9)

which leaves the interval

s2 = ηµνx
µxν (10)

invariant if ηµνΛ
µ
αΛ

ν
β = ηαβ. Under the Lorentz trans-

formation (9) the momentum pµ transforms as a

Lorentz vector

p′µ =Λν
µpν . (11)

From the Bopp’s shift (3) we obtain the following

Lorentz transformation on NC space-time which is

induced by the Lorentz transformation (9) and (11)

x̂′µ = x′µ−
1

2~
θµνp

′ν =Λν
µxν −

1

2~
θµνΛ

ν
ρp

ρ =

Λν
µx̂ν +

1

2~
Λν

µθνρp̂ρ−
1

2~
θµνΛ

ν
ρp̂

ρ . (12)

The above equation defines the non-commutative

Lorentz transformation on NC space-time. From this
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transformation one may note that rather than θµν

transforms as a Lorentz tensor, θµνpν transforms as

a Lorentz vector. So it is easy to check that the

commutation relation (1) on NC space-time is invari-

ant under this transformation. Also, obviously, when

θµν → 0, the NC Lorentz transformation above be-

comes a usual Lorentz transformation on commuting

space-time. From the shift (8) and the Lorentz in-

variant interval (10) one finds the square of the NC

length

s2ncs = x̂µx̂µ +
1

~
θµνx̂

µp̂ν +
1

4~2
θµαθµβ p̂αp̂

β. (13)

Straight forward calculation shows that s2
nc is invari-

ant under the NC Lorentz transformation (12). So we

have defined a non-commutative Lorentz transforma-

tion which leaves s2
nc invariant.

Now we are in a position to generalize the Lorentz

transformation on NC space to NC phase space. From

the generalized Bopp’s shift (5) and (6) on NC phase

space, we obtain it’s inverse transformations

xµ = γ

(

x̂µ +
1

2~
θµν p̂

ν

)

, (14)

pµ = γ

(

p̂µ−
1

2~
θ̄µν x̂

ν

)

, (15)

where γ = 4~
2/(4~

2 − θθ̄). The Lorentz transforma-

tions (9) and (11) induce the following transforma-

tions on NC phase space

x̂′µ = Λν
µxν −

1

2~
θµνΛ

ν
ρp

ρ, (16)

p̂′µ = Λν
µpν +

1

2~
θ̄µνΛ

ν
ρx

ρ. (17)

Inserting Eqs. (14) and (15) into Eqs. (16) and (17),

one obtains

x̂′µ = γ(Λν
µx̂ν +

1

2~
Λµ

νθνλp̂
λ−

1

2~
θµνΛ

ν
λp̂

λ +

1

4~2
θµν θ̄

λαΛν
λx̂α), (18)

p̂′µ = γ(Λν
µp̂ν −

1

2~
Λµ

ν θ̄νλx̂
λ−

1

2~
θ̄µνΛ

ν
λx̂

λ−

1

4~2
θ̄µνθ

λαΛν
λp̂α). (19)

Eqs. (18) and (19) define the non-commutative

Lorentz transformations on NC phase space, the

θµνp
ν and θ̄µνx

ν transform as Lorentz vectors on NC

phase space. When θ̄ → 0, the Lorentz transforma-

tions (18) and (19) on NC phase space reduce to the

Lorentz transformations on NC space. Using the in-

verse of the generalized Bopp’s shift (14) and (15),

one finds that the square of the non-commutative

length on NC phase space is given by

s2ncps = γ2

(

x̂µx̂µ +
1

~
θµν x̂

µp̂ν +
1

4~2
θµαθµβ p̂αp̂

β

)

.

(20)

One can check that s2
ncps is left invariant by the NC

Lorentz transformations on NC phase space.

It is straightforward to extend our results above

to a Poincare transformation, since a shift by a con-

stant of the non-commutative coordinates is compat-

ible with the algebraic relations Eq. (1) on NC space

and Eq. (4) on NC phase space. An infinitesimal non-

commutative Poincare transformation Λµ
ν = δµ

ν +ωµ
ν ,

aµ = εµ is implemented by the operator

U(1+ω,ε) = 1+
i

2
ωµνJ

µν − iεµp
µ + · · · (21)

with Jµν =xµpν−xνpµ. The operator is un-deformed,

because the NC Poincare transformation is induced

by the Poincare transformation on commuting space.

So the Lie algebra of the Lorentz group is also un-

deformed,

[Jµν ,Jρσ] = −i(ηνρJµσ −ηµρJνσ −ησµJρν +ησνJρµ) ,

[pµ,Jρσ] = −i(ηµρpσ −ηµσpρ) ,

[pµ,pν ] = 0 . (22)

One may apply our formulation to field theory. To

do so, derivatives have to be defined. From Ref. [14]

the derivative on NC space can be defined as

∂̂
x

µf(x,p) = −iθ−1
µν [x̂ν ,f(x,p)] =

−iθ−1
µν

[

xν −
1

2~
θναpα,f(x,p)

]

. (23)

Similarly, on NC phase space we define the derivative

of momentum as follows

∂̂
p

µf(x,p) = −iθ̄−1
µν [p̂ν ,f(x,p)] =

−iθ̄−1
µν

[

pν +
1

2~
θ̄ναxα,f(x,p)

]

. (24)

Under NC Lorentz transformations, the derivatives

transform as

∂̂
′x

µ = θ−1
µαΛ

α
βθ

βσ∂̂
x

σ ,

∂̂
′p

µ = θ̄−1
µαΛ

α
β θ̄

βσ∂̂
p

σ . (25)

Now let’s consider a non-commutative action for

a Dirac fermion coupled to a Yang-Mills gauge field.

The action in 2+1 dimension is given by

S=

∫
d3 ¯̂
Ψ(x̂)(iˆ6D−m)Ψ̂(x̂)−

1

2

∫
d3xTrF̂µν(x̂)F̂ µν(x̂) .

(26)

Under the NC Lorentz transformations, Ref. [8] found
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that the NC Yang-Mills potential transforms as

Â
′

µ = θ−1
µαΛ

α
βθ

βσÂσ , (27)

the NC covariant derivative transforms as

D̂
′

µ = θ−1
µαΛ

α
σθ

σαD̂σ , (28)

and the field strength tensor transforms as

F̂
′

µν = θ−1
µρΛ

ρ
σθ

σαθ−1
νζ Λ

ζ
ηθ

ηβF̂αβ , (29)

and the NC spinor field transforms as

Ψ̂
′

= exp

(

−
i

2
ωαβSαβ

)

Ψ̂ , (30)

with Sµν =
i

4
[γµ,γν ]. If the fields are taken in the en-

veloping algebra, the classical field, namely the lead-

ing order of the Seiberg-Witten map, also transforms

according to Eqs. (27)–(30). Though Eqs. (27)–(30)

have the same form both for 2 + 1 dimensional NC

space time and the 3+1 dimensional NC space time

in Ref. [8], because of the singularity of the ma-

trix Θ = (θij) in 3 + 1 dimensional NC space-time,

Eqs. (27)–(30) can not be applicable to 3+1 dimen-

sional NC space time. Detailed discussions will be

given in the conclusion section.

To replace the noncommutative argument of the

function by a commutative one, we need to introduce

a star product, f(x̂)g(x̂) = f(x)?g(x). The star prod-

uct here is given in Eq. (2) for NC space and defined

in Eq. (7) for NC phase space. It is easy to verify

that these star product is invariant under NC Lorentz

transformations. After replacing NC coordinates by

the commutative ones through the star product and

expanding the fields in the enveloping algebra by us-

ing Seiberg-Witten Map, Eq. (26), to first order of θ,

reads

S=

∫
d3x

[

ψ̄(i 6D−m)ψ−
1

4
θµν ψ̄Fµν(i 6D−m)ψ−

1

2
θµνψ̄γρFρµ iDνψ−

1

2
TrFµνF

µν +

1

4
θµν TrFµνFρσF

ρσ− θµν TrFµρFνσF
ρσ

]

+O(θ2) ,

(31)

which is invariant under noncommutative Lorentz

transformation.

4 Conclusions

In this paper we give a description of NC phase

space, where the star product can be easily defined

(see Eq. (7)). Following the Ref. [8], we define a non-

commutative Lorentz transformation both on NC

space and NC phase space in 2+1 dimensions. The

basic idea is to define the Lorentz transformations for

commutative coordinates (9) and momenta (11) and

then to feed back these transformations to the non-

commutative sectors via the variable transformations

(14) and (15). The algebraic relations both on NC

space and NC phase space are invariant under NC

Lorentz transformations, and the θ-expanded gauge

field action is also invariant under NC Lorentz trans-

formations.

In this paper though Greek indices are introduced,

we assume that µ,ν run as i, j and take values from

1 to 2, because we have set θ0µ = 0. Why do we

consider a 2-dimensional NC space and NC phase

space instead of the 3-dimensional situation. The

main reason is that on 3-dimensional NC space and

NC phase space the non-commutative parameters θij

and θ̄ij can be considered as anti-symmetric matrices,

Θ= (θij), Θ̄= (θ̄ij), the elements

θij = εijkθk, θ̄ij = εijkθ̄k, (32)

i.e.

Θ =









0 θ3 −θ2

−θ3 0 θ1

θ2 −θ1 0









,

Θ̄ =









0 θ̄3 −θ̄2

−θ̄3 0 θ̄1

θ̄2 −θ̄1 0









. (33)

It is easy to find that these two anti-symmetric matri-

ces are singular matrices, because detΘ = detΘ̄ = 0.

For these reasons we can not define the inverse of

these matrices, and terms related to θ−1
ij or θ̄−1

ij will

make no sense on 3-dimensional NC space and NC

phase space. This problem also exists in Ref. [8],

for example, the Eqs. (17)–(21) of the Ref. [8] make

little sense in 3+1 dimensions. The NC phase space

formulation and the NC Lorentz transformation of

this paper can be easily extended to any even dimen-

sional space, however, for any odd dimensional case,

the anti-symmetric matrices Θ and Θ̄ are singular,

the method here would not be applicable, which will

be discussed in our forthcoming studies.
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