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Recursive method for opacity expansion

at finite temperature *
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Abstract: Using a reaction operator approach, we derive the multiple-scattering induced gluon number

distribution function to all orders in powers of opacity at finite temperature. The detailed balance effect is

analyzed by taking into account both gluon emission and absorption in a thermal medium. We also calculate

virtual corrections and show that the infrared divergence cancels out in the gluon distribution function at finite

temperature.
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1 Introduction

One of the most exciting phenomena observed at

the RHIC is jet quenching, i.e., gluon radiation in-

duced by multiple scattering for an energetic parton

propagating in a dense medium.

Recent theoretical studies of parton energy loss

have concentrated on gluon radiation induced by

multiple scattering in a hot dense medium. Sev-

eral approaches have been proposed to compute the

medium-induced energy loss of a jet when it prop-

agates in a dense medium. The opacity expansion

method, developed by Widemann [1, 2], as well as

Gyulassy, Lévai and Vitev (GLV) [3–6], has been used

to study the non-Abelian energy loss. The inclusive

gluon distribution to the nth order in opacity was de-

rived at zero temperature, by using the reaction op-

erator approach. This approach is based on the con-

struction of a suitable reaction operator, R̂n, from

which recursion relations for the inclusive gluon dis-

tribution can be derived and solved analytically at an

arbitrary order n.

At finite temperature, since gluons are bosons,

there should be stimulated gluon emission and ab-

sorption by the propagating parton due to the pres-

ence of thermal gluons in a hot dense medium. Such

detailed balance is important for calculating parton

energy loss [7].

In this paper, we follow the framework of opacity

expansion and generalize the reaction operator ap-

proach to finite temperature cases. We calculate both

real and virtual corrections and obtain the infrared

safe inclusive gluon number distribution function to

all orders in the opacity expansion.

2 Model and graphical shorthand

2.1 Model

The opacity is defined by the mean number of col-

lisions in the medium, n̄ ≡ L/λ = Nσ/A⊥. Here N ,

L, and A⊥ are the number, the thickness and the

transverse area of the targets, and λ is the average

mean-free path for the jet.

We employ the Gyulassy-Wang static color-

screened Yukawa potential [8, 9] to model the inter-

action between the jet and target partons in a decon-
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fined quark-gluon plasma:

Vn = 2πδ(q0)v(qn)e−iqn·xnTan
(R)⊗Tan

(n), (1)

where xn is the location of the nth target parton and

v(qn) is given by

v(qn) =
4παs

qn +µ2
, (2)

and Tan
(R) and Tan

(n) are the color matrices for

the jet and target parton respectively. The small

transverse momentum transfer elastic cross section

between the jet and target partons in this model is

dσel(R,T )

d2q⊥

=
CRC2(T )

dA

|v(q⊥)|
2

(2π)2
, (3)

where CR is the casimir of the jet parton in the dR

dimensional representation, C2(T ) is the casimir of

the target parton in the dT representation. CA is the

casimir in the adjoint gluon representation. The nor-

malized distribution of momentum transer from the

scattering centers is defined as follows:

|v̄(q⊥)|
2
≡

1

σel

d2σel

d2q⊥

=
1

π

µ2
eff

(q2
⊥+µ2)2

, (4)

where, in the Yukawa example, the normalization de-

pends on the kinematic bounds through

1

µ2
eff

=
1

µ2
−

1

q2
⊥max +µ2

. (5)

and insure that

∫q⊥max

d2q⊥ |v̄(q⊥)|
2
= 1.

2.2 Graphical shorthand

A general graph consists of a gluon emission ver-

tex, Gm, for emitting a gluon between centers zm and

zm+1, and a specific set of direct interactions, Xi,σi

for center i, and double Born interactions denoted as

Oj,aj
for center j. The index σi = 0,1 stands for a

single direct interaction at center i with the jet and

gluon separately, while the index aj = 0,1,2 denotes

a contact interaction at center j with the jet, gluon

and both jet+gluon, respectively.

In this notation, any diagram can be written in

the form:

M=

[

m
∏

i=0

Ti,αi

]

Gm

[

n
∏

j=m+1

Tj,βj

]

,

Ti,αi
,Ti,βi

∈ (Xi,σi
,Oi,ai

). (6)

While Eq. (6) can be used to enumerate all “single

gluon emission with rescatterings” diagrams arising

from a target with n aligned centers, it will prove con-

venient to group diagrams into classes of graphs that

can be iteratively built from a diagrammatic kernel.

In this paper we employ the GLV formalism,

which assumes that the parton is produced inside the

medium (e.g., through A+A → q+q̄+X, with high

Q2 ≡ E+2) at a finite point (t0, x0) and then study

the interaction between this outgoing jet and a hot

medium: at this step, the gluon radiation before and

after the multiple scattering between the jet and the

medium parton are taken into consideration. The ker-

nel for the hard production vertex is

Ker(H) = G0 =−2

(

E−ω

E

)

igs

ε⊥ ·k⊥

k2
⊥

eiω0z0c. (7)

In the light-cone components,

k = [k+, k−, k⊥] =

[

2ω,
k2

⊥

2ω
, k⊥

]

is the four-momentum of the radiated gluon with po-

larization ε = [0,(ε⊥ ·k⊥)/k+,ε⊥] , E is the initial jet

energy, |ω| is the radiated (absorbed) gluon energy

and the jet emerges with a momentum of

p =

[

2(E−ω),
k2

⊥

2(E−ω)
, −k⊥

]

.

c is the color of the radiated gluon and αs = g2/4π

is the strong coupling constant. We will also use the

energy fraction x≡ |ω|/E in the rest of the paper.

2.3 Construct diagrams

We focus here on the hard jet case relevant to

nuclear collisions with a hard production vertex lo-

calized at z0, as in Eq. (7). We consider the effect

of final state interaction at position zi >z0 along the

direction of the jet.

Let A denote a class of graphs with NA members

in which the last interaction has occurred at position

zj < zi. We then enlarge this class of graphs. We can

add a direct interaction at zi and label it by ADi,

where Di specifies the direct insertion iteration. The

new class contains 2NA diagrams:

1) AXi,0: A direct interaction with the jet

2) AXi,1: A direct interaction with the previously

emitted gluon

In addition, there is a new special diagram,

AG−1Xi,0Gi = (ADi)0, where all interactions (di-

rect or virtual), including the one at zi, are with the

jet and the gluon is emitted after all interactions at

zi < z <∞. (G−1 amputates the gluon emission ver-

tex of A0.)

The new class with 2NA+1 graphs is constructed

as

A=⇒ADi =AXi,0 +AXi,1 +AG−1Xi,0Gi. (8)

Similarly, we can consider the possibilities that

arise from inserting a double Born virtual interaction

at location zi. This case includes a new subclass of
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diagrams among which one of the legs is attached to

the jet line and the other one to the gluon line, i.e.

AOi,2. So the new class AVi has 3NA+1 diagrams

A=⇒AVi =AOi,0+AOi,1+AOi,2+AG−1Oi,0Gi. (9)

3 Recursive method for opacity ex-

pansion

The GLV developed the recursive method, or reac-

tion operator approach [3, 4], to calculate the induced

gluon number distribution in the nth order in opac-

ity at zero temperature. In this section, we general-

ize this method to finite temperature cases, in which

one needs to take into account both stimulated gluon

emission and absorption in a thermal medium with fi-

nite temperature T . Because of gluon absorption, we

do not assume E � |ω| as in the zero temperature

case. The phase space integration at finite tempera-

ture is given by

dΦ =
d4k

(2π)3
1

2 |k|
[(1+N(|k|))δ(ω−|k|)

+N(|k|)δ(ω+ |k|)], (10)

where N(|k|) = 1/[exp(|k|/T )−1] is the thermal gluon

distribution.

In Sec. 2.3, we have discussed how to use the oper-

ator D̂i, V̂i to construct new diagrams. Here we give

the explicit formula. First, we recall the definitions

of the Hard, Gunion-Bertsch and Cascade terms [10]

H =
k⊥

k2
⊥

, Bi = H−Ci,

C(i1,i2,··· ,im) =
(k⊥−qi1⊥−qi2⊥−·· ·qim⊥)

(k⊥−qi1⊥−qi2⊥−·· ·qim⊥)2
,

B(i1,i2,··· ,im)(j1,j2,··· ,jm) = C(i1,i2,··· ,im)

−C(j1,j2,··· ,jm). (11)

Here and in the rest of the paper, we have suppressed

the common factor (2igsε⊥) in all diagrams for sim-

plicity.

3.1 Amplitude iteration

3.1.1 General idea

In class A the sum of amplitudes can be denoted

by

A(x,k⊥, c)≡
∑

α

Aα(x,k⊥)Col(c)α (12)

where Aα(x,k⊥) represents the kinematical part,

Col(c)α stands for the color matrix for graphs in this

class enumerated by α. Since by definition classes

are constructed by repeated operations of either one

of three operations, 1̂, D̂i, V̂i, we can enumerate the

3n different classes of diagrams via a tensor notation,

Ai1···in
, where the indices ij = 0,1,2 specify whether

there is no, a direct or a virtual interaction with the

target parton at zj :

Ai1···in
(x,k⊥, c) =

n
∏

m=1

[

δ0,im
+δ1,im

D̂m +δ2,im
V̂m

]

×G0(x,k⊥, c). (13)

The inclusive induced “probability” distribution

at order n in the opacity expansion can be computed

from the following sum of products over the 3n classes

that contribute at that order:

Pn(x,k⊥) = Āi1···in(c)Ai1 ···in
(c)

≡ Tr

2
∑

i1=0

· · ·

2
∑

in=0

Ā†
i1···in

(x,k⊥, c)

×Ai1···in
(x,k⊥, c), (14)

where the unique complementary class that contracts

with Ai1···in
is defined by

Āi1···in(x,k⊥, c)

≡G†
0(x,k⊥, c)

n
∏

m=1

[

δ0,im
V̂ †

m +δ1,im
D̂†

m +δ2,im

]

. (15)

By the definitions of A and Ā, we can ensure that

every ĀA product is in the same order separately.

With this tensor classification and construction,

it becomes possible to construct Pn recursively from

the lower rank (opacity) classes through the insertion

of a “reaction” operator as follows:

Pn = Āi1···in−1R̂nAi1···in−1
, (16)

where

R̂n = D̂†
nD̂n + V̂n + V̂ †

n . (17)

Once we get the general solution for the gluon prob-

ability at the nth order in opacity, we can take the

ensemble average over momentum transfers to obtain

the induced gluon number distribution.

3.1.2 Construct D̂n and V̂n

In this section we derive an explicit formula for

D̂nAi1···in−1
(x,k⊥, c) and V̂nAi1···in−1

(x,k⊥, c), from

which we can obtain the explicit form of Eq. (16) and

then compute Pn recursively.

Using the same method as the GLV, we derive D̂n:

D̂nAi1···in−1
(x,k⊥, c) = (an + Ŝn +B̂n)

×Ai1···in−1
(x,k⊥, c). (18)

Here, we define two new operators: Ŝn and B̂n. Ŝn,

the “shift” or gluon scattering operator, is defined as

Ŝn = if cand×ei(ω0−ωn)zneiqn⊥·b̂. (19)
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where b̂ ≡ i
−→
∇k⊥ is the impact parameter operator

such that

eiqn⊥·b̂f(k⊥) = f(k⊥−qn⊥). (20)

The other operator B̂n is defined as

B̂nAi1···in−1
(x,k⊥, c)

= −

(

−
1

2

)Nv(Ai1···in−1
)(

E−ω

E

)

Bn

×eiω0zn [c,an]Tel(Ai1 ···in−1
), (21)

where

Tel(Ai1···in−1
)≡ (an−1)

in−1 · · · (a1)
i1 ,

T †
el(Ā

i1···in−1)≡ (a1)
2−i1 · · · (an−1)

2−in−1 . (22)
(

−
1

2

)Nv

in Eq. (21) arises because every virtual con-

tact interaction introduces a factor

(

−
1

2

)

from the

contact limit of the contour integration over longi-

tudinal momentum. The numbers, Nv, N̄v of such

contact interaction in the class Ai1···in−1
and its com-

plementary class Āi1···in−1 are defined as

Nv = Nv(Ai1 ···in−1
) =

n−1
∑

m=1

δ2,im
,

N̄v = Nv(Ā
i1 ···in−1) =

n−1
∑

m=1

δ0,im
. (23)

According to Eq. (9), we can also derive the ex-

plicit form of V̂nAi1···in−1
(x,k⊥, c) by using a similar

process as above for D̂nAi1···in−1
(x,k⊥, c). The result

is

V̂n =−
1

2
(CA +CR)−anŜn−anB̂n

=−anD̂n−
1

2
(CA−CR). (24)

3.2 Reaction operator recursion to all orders

of opacity

In this section, we use the expressions for D̂n and

V̂n derived above to obtain a general formula of Pn,

with the help of Eq. (16).

Using Eqs. (18) and (24), we can re-express R̂n in

Eq. (17) as

R̂n = (D̂n−an)†(D̂n−an)−CA

= (Ŝn +B̂n)†(Ŝn +B̂n)−CA. (25)

Next, we insert Eq. (25) to Eq. (16), using the ex-

pressions of Ŝn in Eq. (19) and B̂n in Eq. (21), we

then derive the recursion relation of Pn:

Pn(k⊥) = CA

[

Pn−1(k⊥−qn⊥)−Pn−1(k⊥)
]

−2CA

(

E−ω

E

)

BnRe
[

e−iωnzneiqn⊥·b̂In−1

]

+δn,1

(

E−ω

E

)2

CACR |B1|
2
. (26)

We can solve Eq. (26) with the initial condition:

P0 = G†
0G0 =

(

E−ω

E

)2

CR |H |
2
. (27)

We thus obtain the general solution for gluon distri-

bution probability at the nth order in opacity:

Pn(k⊥) = −2

(

E−ω

E

)2

CRCn
A

×Re

n
∑

i=1

[ n
∏

j=i+1

(eiqj⊥·b̂−1)

]

Bie
iqi⊥·b̂e−iω0zi

×

[ i−1
∏

m=1

(ei(ω0−ωm)zmeiqm⊥·b̂−1)

]

×H(eiω0z1 −eiω0z0). (28)

This is the complete solution to the problem.

3.3 Ensemble average over momentum trans-

fers

We now calculate the ensemble average over the

scattering center location. Following the GLV [4], this

reduces to an impact parameter average as follows:

〈· · · 〉=

∫
d2b

A⊥

. (29)

It has been further shown in Ref. [4] that this leads

to calculating:

〈Pn(k⊥)〉v

=

∫ n
∏

m=1

[d2qm⊥v̄2
m(qm⊥)]Pn(k⊥;q1⊥ · · ·qn⊥). (30)

Inserting Eq. (26) in Eq. (30), we can obtain the re-

cursion relation for the momentum transfer averaged

probability for n > 1 in the form

〈Pn(k⊥)〉v = CA

∫
d2qn⊥[v̄2

n(qn⊥)−δ2(qn⊥)]×〈Pn−1(k⊥−qn⊥)〉v

−2

(

E−ω

E

)2

CRCn
A

∫ n
∏

i=1

[d2qi⊥(v̄2
i (qi⊥)−δ2(qi⊥))]

×Bn ·C(1,··· ,n)Re
[

eiΦn,n(eiω(1···n)(z1−z0)−1)
]

. (31)
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Φn,n is the gluon elastic scattering phase shift from

z0 to zn. The partial phase shift due to gluon rescat-

tering from zm−1 to zn is given by

Φn,m =−

m
∑

k=1

ω(k···n)(zk−zk−1) =−

m
∑

k=1

ω(k···n)∆zk.

(32)

With the value of P1, we can obtain the solution

for n > 0 cases:

〈Pn(k⊥)〉v = −2

(

E−ω

E

)2

CRCn
A

×

∫ n
∏

i=1

[d2qi⊥(v̄2
i (qi⊥)−δ2(qi⊥))]

×

n
∑

m=1

B(m+1,··· ,n)(m,··· ,n) ·C(1,··· ,n)

×Re
[

eiΦn,m(eiω(1···n)(z1−z0)−1)
]

. (33)

To obtain the final gluon number distribution, we

need to multiply
∏

j
(σg(j)/A⊥) along the path to con-

vert v̄j back into vj and a combinational factor

N !

n!(N −n)!
≈

Nn

n!
. (34)

that counts the number of ways n target partons

out of N can be within the interaction range of the

jet+gluon systems. Then after multiplying the phase

space integral in Eq. (10), we finally obtain the in-

duced gluon distribution:

x
dN (n)

dxd2k⊥dω
=

CRαs

π
2

(

E−ω

E

)2(
L

λg(1)

)n
1

n!
×

∫ n
∏

i=1

[d2qi⊥

(

λg(1)

λg(i)

)

(v̄2
i (qi⊥)−δ2(qi⊥))]

×
[

(1+N(xE))δ(ω−xE)+N(xE)δ(ω+xE)
]

×

(

−2C(1,··· ,n)

n
∑

m=1

B(m+1,··· ,n)(m,··· ,n)

×

[

cos

( m
∑

k=2

ω(k,··· ,n)∆zk

)

−cos

( m
∑

k=1

ω(k,··· ,n)∆zk

)])

, (35)

where

ω(m···n) =
E

E−ω

(k⊥−qm⊥−·· ·−qn⊥)2

2ω
. (36)

Our ω(m···n) is different from the definition ωGLV
(m···n) in

GLV [4] by the extra factor E/(E−ω). Besides this

difference in ω(m···n), our result for gluon number dis-

tribution is different from that of the GLV at zero

temperature by an overall factor (E−ω)2/E2 and the

phase space integral. This simplicity in the transfor-

mation from zero-temperature to finite-temperature

cases is likely due to the static form of the Yukawa

potential.

In principle, one should also include virtual cor-

rections to ensure unitarity and to obtain an infrared

safe gluon number distribution. One can immediately

see this is necessary since
dN (n)

d2k⊥

is divergent when

|k|→ 0.

4 Virtual correction

As we have seen in the last section, infrared diver-

gence appears in the inclusive gluon number distribu-

tion when we consider only real corrections. However,

when one includes both real and virtual corrections,

the infrared divergence will cancel out and we will ob-

tain an infrared safe gluon number distribution. We

will study the virtual corrections in this section.

We find that one could derive the virtual correc-

tions by taking advantage of the result for real cor-

rections. This is because one could generate virtual

diagrams from the real processes in the following way:

taking every real process diagram, we can make a vir-

tual gluon by picking two gluon momenta k1 and k2,

setting k1 =−k2 = k, multiplying by the gluon prop-

agator and integrating over k, i.e.

dN (n)
vir. =iT

∞
∑

n=−∞

∫
d3k

(2π)3
1

ω2
n +k2

×
(

Āi1···in(−k,c)
)µ

igµν

(

Ai1···in
(k,c)

)ν

=

∫
d3k

(2π)3
1

2 |k|
[1+2N(|k|)]Āi1 ···in(−k,c)

×Ai1···in
(k,c). (37)

where dN (n)
vir. is the contribution of virtual gluon pro-

cess to gluon distribution and

Āi1···in(−x,−k⊥, c)

≡ G†
0(−x,−k⊥, c)

n
∏

m=1

[

δ0,im
V̂ †

m +δ1,im
D̂†

m +δ2,im

]

.

(38)

Like before, we define the probability for virtual pro-

cess

P vir
n = Āi1···in(−x,−k⊥, c)Ai1···in

(x,k⊥, c). (39)
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and we will also have the same recursion relation as

P vir
n = Āi1···in−1(−x,−k⊥, c)R̂nAi1···in−1

(x,k⊥, c). (40)

In the small x limit, we can construct the recursion relation between P vir
n and P vir

n−1 exactly as before and

derive the general formula for P vir
n (n > 1) as follows:

P vir
n = CA(eiqn⊥·b̂−1)P vir

n−1 +2CRCn
A

(

E2−ω2

E2

)

BnRe[e−iωnzneiqn⊥·b̂]

×

[ n−1
∏

m=1

(ei(ω0−ωm)zmeiqm⊥·b̂−1)

]

×H(eiω0z1 −eiω0z0)

= 2(1−x2)CRCn
ARe

n
∑

i=1

[ n
∏

j=i+1

(eiqj⊥·b̂−1)

]

×Bie
iqi⊥·b̂e−iω0zi

×

[ i−1
∏

m=1

(ei(ω0−ωm)zmeiqm⊥·b̂−1)

]

H(eiω0z1 −eiω0z0). (41)

Then, following the same procedure for ensemble average:

〈P vir
n 〉v = (1−x2)CRCn

A

∫ n
∏

i=1

[d2qi⊥(v̄2
i (qi⊥)−δ2(qi⊥))]×

n
∑

m=1

2B(m+1,··· ,n)(m,··· ,n) ·C(1,··· ,n)

×Re
[

eiΦn,m(eiω(1···n)(z1−z0)−1)
]

. (42)

Finally, we obtain the “induced gluon distribution”

for virtual gluon process:

x
dN (n)

vir.

dxd2k⊥dω

=
CRαs

π
2

(1−x2)δ(ω)[1+N(xE)]

(

L

λg(1)

)n

×
1

n!

∫ n
∏

i=1

[d2qi⊥

(

λg(1)

λg(i)

)

(v̄2
i (qi⊥)−δ2(qi⊥))]

×

(

2C(1,··· ,n)

n
∑

m=1

B(m+1,··· ,n)(m,··· ,n)

×

[

cos

( m
∑

k=2

ω(k,··· ,n)∆zk

)

−cos

( m
∑

k=1

ω(k,··· ,n)∆zk

)]

)

. (43)

One could easily verify that the infrared divergence

cancels out between Eqs. (35) and (43). Thus, putting

them together, we obtain an infrared safe gluon num-

ber distribution. Because of the existence of δ(ω) in

Eq. (43), the virtual process does not contribute to

the effective energy loss. However, they are impor-

tant to ensure unitarity and to obtain the infrared

safe gluon distribution.

5 Conclusion

In summary, taking into account both gluon emis-

sion and absorption in a hot dense medium, we have

derived the inclusive gluon number distribution to

the nth order in opacity at finite temperature. We

calculate both the real and virtual corrections, and

show that the infrared divergence cancels out between

them, thus producing an infrared safe gluon number

distribution. In the future, we will use the results

derived in this paper to calculate jet energy loss in a

thermal medium and to find out how gluon absorp-

tion could change the behavior of the energy loss.
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