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Dynamical CP violation of the generalized

Yang-Mills model

WANG Dian-Fu(�EÅ)1;1) SUN Xiao-Yu(���)2 CHANG Xiao-Jing(~¡o)1

1 Department of Physics, Dalian Maritime University, Dalian 116026, China
2 School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China

Abstract: Starting from the generalized Yang-Mills model which contains, besides the vector part Vµ, also a

scalar part S and a pseudoscalar part P . It is shown, in terms of the Nambu-Jona-Lasinio (NJL) mechanism,

that CP violation can be realized dynamically. The combination of the generalized Yang-Mills model and the

NJL mechanism provides a new way to explain CP violation.
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1 Introduction

Since the violation of parity symmetry proposed

by Lee and Yang [1] was confirmed, the study of sym-

metry and symmetry breaking has played a central

role in particle physics. It was argued that the ele-

mentary electric dipole moments would vanish due to

the combined charge conjugation and parity symme-

try, i.e., CP symmetry. However, it was then pointed

out by Ramsey and independently by Jackson and

collaborators [2] that T invariance was also an as-

sumption and needed to be checked experimentally.

Since then the search for CP violation has been vigor-

ously pursued. In 1964, CP symmetry was eventually

found to be violated in the kaon system by Val Fitch,

James Cronin, and collaborators [3].

Within the framework of the Standard Model,

there are two sources of CP violation. One is the

CKM model [4, 5], where the source of CP viola-

tion comes from the phase [5] δ in the CKM mixing

matrix for quarks. All the laboratory experimental

results [6] related to CP violation and mixing phe-

nomena are consistent with the CKM model up to

now. The Standard Model has another source of CP

violation in addition to one that appears in the CKM

matrix. This source of CP violation arises in the

strong interaction sector of the theory from the term

θ(αs/8π)GG̃, which is of topological origin.

CP violation is central to understand the phe-

nomena in cosmology as well as in particle physics. In

1967, Andre Sakharovit pointed out that CP viola-

tion plays an important role in generating the baryon

asymmetry in the universe. However, the CP viola-

tion in the Standard Model is not sufficient to gen-

erate the desired amount of baryon asymmetry and

one needs a source of CP violation above and beyond

what is present in the Standard Model. Further, new

sources of CP violation beyond the standard model

could also show up in particles production at the

Large Hadron Collider, and in the new generation

of experiments underway on neutrino physics.

In addition to the baryon asymmetry in the uni-

verse there are other avenues which may reveal the

existence of a new source of the CP violation that

exists in the Standard Model. The electric dipole

moments (EDMs) of elementary particles and atoms

are prime candidates for these. The largest values of

EDMs in the framework of the Standard Model are

very small. In the past decades a significant body

of work on CP violation beyond the standard CKM

model has appeared. It encompasses spontaneous CP

violation models [7–10], left-right symmetric models

[11] and so on.

At present, the Standard Model of particle physics

stands triumphant, and all the data obtained from

many experiments in particle physics are in agree-
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ment with this model. Higgs fields and the original

Higgs mechanism [12] have appeared in the literature

of gauge theories and unified theories in two distinct

guises: one is to break the gauge symmetry and the

other is to provide a mass for the physical particles.

Nevertheless, there are still some open problems in

it. A very important problem is that so far there is

not any experimental evidence to support the exis-

tence of elementary Higgs particles. There are some

suggestions to avoid the difficulties for introducing

the Higgs fields and Higgs mechanism. Some authors

have suggested that the Higgs fields are bound state

of fermion—anti-fermion pairs [13–17].

To overcome the difficulties of the usual gauge the-

ories and Higgs mechanism is the motivation for much

effort for a long time. In our previous work [18,19], a

maximally generalized Yang-Mills model (MGYMM)

which contains, besides the vector part Vµ, also an

axial-vector part Aµ, a scalar part S, a pseudoscalar

part P and a tensor part Tµν is constructed and the

dynamical breaking of gauge symmetry in the model

is also discussed. It is shown, in terms of the Nambu-

Jona-Lasinio mechanism (NJL) [20], that the gauge

symmetry breaking can be realized dynamically in

the maximally generalized Yang-Mills model. The

combination of the maximally generalized Yang-Mills

model and the NJL mechanism provides a way to

overcome the difficulties related to the Higgs fields

and the Higgs mechanism in the usual spontaneous

symmetry breaking theory. At the same time this

combination can also provide a new mechanism of

CP violation.

The main objective of the present paper is to con-

struct a new CP violation model by using the gen-

eralized Yang-Mills model (GYMM) which contains,

besides the vector part Vµ, also a scalar part S and a

pseudoscalar part P . In this model the symmetry of

CP will be broken down dynamically.

2 Maximally generalized Yang-Mills

model

In this section, we will review the model which

we proposed in Ref.[18]. In the usual Yang-Mills the-

ory gauge invariance is assured through the demand

that vector gauge transform as γµVµ →U(γµVµ)U−1−
(γµ ∂µ U)U−1. Recently, some authors [21–23] have

again studied the Yang-Mills theory and constructed

generalized Yang-Mills theories (GYMT) in which

pseudoscalar boson fields [21], axial-vector fields [22]

or scalar fields [23] are considered to be also accept-

able as gauge fields. Following these discussions, we

have constructed a maximally generalized Yang-Mills

model (MGYMM) [18].

The main idea of MGYMM is as follows: Consider

a Lagrangian which is invariant under a Lie group

with N generators. Corresponding to each generator

of the Lie group there is one gauge field, it does not

matter whether vector field or other fields. One can

choose the first NV to be associated with an equal

number of vector gauge fields and the last N ′ to be

associated with an equal number of the other fields.

Naturally NV+N ′ = N . By taking each of the genera-

tors and multiplying it by one of its associated gauge

fields and summing them together, we construct a

maximally generalized Dirac covariant derivative D

as

D = γµ ∂µ−iγµVµ +Φ, (1)

with Φ = S + iγ5P − iγµAµγ5 + σµνTµν being the

generic gauge field in which S = gScT c is a scalar

field, P = gP bT b a pseudoscalar field, Vµ = gV a
µ T a

a vector field, Aµ = gAd
µT d an axial-vector field and

Tµν = gT e
µνT

e a tensor field, the superscript a varies

from 1 to NV, b varies from NV + 1 to NV + NP, c

varies from NV + NP + 1 to NV + NP + NS, d varies

from NV+NP+NS+1 to NV+NP+NS+NA and the

superscript e varies from NV +NP +NS +NA +1 to

NV +NP +NS+NA +NT.

By defining the transformation for the gauge fields

as

−iγµVµ+Φ→U(−iγµVµ+Φ)U−1−(γµ ∂µ U)U−1, (2)

we can obtain that D→UDU−1. Then we can build

up the Lagrangian which contains only the matter

fields and convariant derivatives, and possesses both

the Lorentz and gauge invariance

L =−Ψ̄DΨ +
1

2g2
T̃r

(

1

8
(TrD2)2− 1

2
TrD4

)

, (3)

where the trace with the tilde is over the gauge (or

the Lie group) matrices and the one without the tilde

is over matrices of the spinorial representation of the

Lorentz group. The expansion of Eq. (3) will be

L = −Ψ̄(γµ ∂µ−iγµVµ +Φ)Ψ − 1

2g2
T̃r(∂µ Vν −∂ν Vµ

−i[Vµ,Vν ])2− 1

4g2
T̃r [Tr(γµ ∂µ Φ− i{γµVµ,Φ})2] .

(4)

As in the usual Yang-Mills theories, when D acts on

the matter fields Ψ , its gauge fields are going to be

multiplied by constants (the charges) QV, QS, QP,

QA and QT with the result DΨ = (γµ ∂µ−iQVγµVµ +

QSS+iQPγ5P −iQAγµAµγ5+QTσµνTµν)Ψ . From the
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Standard Model we can conclude that QV = 1. Fol-

lowing this consideration, we can finally obtain the

Lagrangian of the maximally generalized Yang-Mills

model

L = −Ψ̄(γµ ∂µ−iγµVµ +QSS +iQPγ5P − iQAγµAµγ5

+QTσµνTµν)Ψ − 1

2g2
T̃r(∂µ Vν −∂ν Vµ− i[Vµ,Vν ])2

− 1

4g2
T̃r [Tr(γµ ∂µ Φ− i{γµVµ,Φ})2] . (5)

When taking Φ = iγ5P or Φ =−iγµAµγ5, one will ob-

tain the theories which have been given in Ref. [21]

and Ref. [22].

3 Generalized Yang-Mills model and

its dynamical CP violation

In this section, we will investigate the dynami-

cal CP violation of the generalized Yang-Mills model

with Φ = S+iγ5P . Taking Φ = S+iγ5P in the covariant

derivative Eq. (1), then Eq. (5) changes to be

L = −Ψ̄γµ(∂µ−iVµ)Ψ − Ψ̄(QSS +iQPγ5P )Ψ

− 1

2g2
T̃r(∂µ Vν −∂ν Vµ− i[Vµ,Vν ])2

− 1

4g2
T̃r{Tr[γµ ∂µ(S +iγ5P )

−i{γµVµ,(S +iγ5P )}]2}. (6)

From Eq. (6) one can find that the Lagrangian is in-

variant under CP and T . For convenience, here and

after we will neglect the interaction terms between the

scalar field and the pseudoscalar field. The relevance

of the Lagrangian density (6) then consists simply of

L = −Ψ̄γµ(∂µ−iVµ)Ψ − Ψ̄(QSS +iQPγ5P )Ψ

− 1

2g2
T̃r(∂µ Vν −∂ν Vµ− i[Vµ,Vν ])2− 1

g2
T̃r[(∂µ S

−i{Vµ,S})2 +(∂µ P − i[Vµ,P ])2]. (7)

The first term on the right side is the same as the

usual matter term of a gauge theory, the second is

the same as the Yukawa term, the third is the ki-

netic energy term of the vector gauge fields in the

usual Yang-Mills theory and the fourth is similar to

the gauge-invariant kinetic energy of scalar and pseu-

doscalar bosons in the non-Abelian adjoint represen-

tation. And one can also easily find that in this model

it does not include the Higgs potential V which is nec-

essary in the spontaneously broken gauge theories. In

the model presented here, if the symmetry breaking

is achieved spontaneously, then the Higgs potential V

also has to be introduced explicity.

Here, if we regard the scalar fields in the present

model not as the Higgs fields related to the spon-

taneous symmetry breaking, then we do not need to

introduce the Higgs potential V to the model. And in

the conditions that the Higgs potential V disappear

in the MGYMM, we can regard the scalar fields as

the physical vacuum no longer as the Higgs fields as

some authors have done [24–26]. We will show that

by using the NJL mechanism the symmetry breaking

can be realized dynamically.

The equation of motion, from the Lagrangian (7),

is given by

γµ(∂µ−igV a
µ T a)Ψ+(GSS

cT c+iGPγ5P
bT b)Ψ = 0, (8)

(∂2
µ−g2dSV

a
µ V a

µ )Sc−GSΨ̄T cΨ = 0, (9)

(∂2

µ−g2fPV a
µ V a

µ )P b− iGPΨ̄γ5T
bΨ = 0, (10)

(∂µ F a
µν +gfabcV b

µ F c
µν)+[g2dS(S

c)2

+g2fP(P b)2]V a
ν − igΨ̄γνT

aΨ = 0, (11)

in which, GS = gQS, GP = gQP, F a
µν = ∂µ V a

ν −∂ν V a
µ +

gfabcV b
µ V c

ν and dS = dabcdabc, fP = fabcfabc (in dS

and fP, where a varies from 1 to NV, b varies from

NV+1 to NV +NP, and c varies from NV +NP+1 to

NV +NP +NS). Multiplying the left and right-hand

side of Eq. (11) by V a
ν , we obtain

{(∂µ F a
µν +gfabcV b

µ F c
µν)+[g2dS(S

c)2 +g2fP(P b)2]V a
ν

− igΨ̄γνT
aΨ}V a

ν = 0. (12)

After taking vacuum expectation value of Eq. (12), to

the lowest-order approximation in ~, we obtain [24–

26]

fV〈V a
µ V a

µ 〉= dS〈(Sc)2〉+fP〈(P b)2〉, (13)

in which fV = fabcfabc (a, b, c vary from 1 to NV).

We can see that in the ground state, Eq. (13) gives

an important relation about the vector gauge bosons,

the pseudoscalar fields and the scalar fields. As is well

known, if the vacuum (the ground state of the model)

expectation value of the scalar fields (or the pseu-

doscalar fields) is non-vanishing, the gauge symmetry

will be broken down. Here one can choose the scalar

bosons Sc1 and P b1 to be associated with the unit

generator T c1 = T b1 = 1/
√

2Nd. times the Nd ×Nd

unit matrix (Nd: the dimensions of the fundamental

representation), and if there is no unit generator in

the Lie group one can introduce a unit one to it. We

denote the vacuum expectation of the scalar bosons

〈Sc〉= 〈Sc1〉 6= 0, 〈P b〉= 〈P b1〉 6= 0 . (14)

The nonzero expectation value of P b implies that the

vacuum state is not an eigenstate of CP . In order

to exhibit more clearly the CP -violating character of
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the solution, we may perform a unitary transforma-

tion under which P b is unchanged, but

Ψ → e−i 1
2

γ5αΨ. (15)

Therefore, the quadratic expressions

Ψ̄Ψ → Ψ̄e−iγ5αΨ = Ψ̄(cosα− iγ5 sinα)Ψ, (16)

iΨ̄γ5Ψ → iΨ̄γ5e
−iγ5αΨ = Ψ̄(sinα+iγ5 cosα)Ψ. (17)

Hence, by choosing

tanα =
GP〈P b〉T b

GS〈Sc〉T c
, (18)

we have

Ψ̄(GS〈Sc〉T c +iGPγ5〈P b〉T b)Ψ → Ψ̄MΨΨ, (19)

with the fermion mass

MΨ =

[

1

2Nd

(Gs〈Sc1〉)2 +
1

2Nd

(GP〈P b1〉)2
] 1

2

. (20)

Then after taking the vacuum expectation values of

Eq. (9) and Eq. (10) to the lowest-order approxima-

tion in ~, we obtain the self-consistency equations as

M 2
S〈Sc1〉 = −GS

√

1

2Nd

〈Ψ̄Ψ〉

= iGS

√

1

2Nd

TrSF(0), (21)

M 2
P〈P b1〉 = −iGP

√

1

2Nd

〈Ψ̄γ5Ψ〉

= −GP

√

1

2Nd

Tr[γ5SF(0)], (22)

in which M 2
S = g2dS〈V a

µ V a
µ 〉, M 2

P = g2fP〈V a
µ V a

µ 〉.
Comparing Eq. (21) with Eq. (22), we have

〈Sc1〉 = − ifPGSTrSF(0)

dSGPTr[γ5SF(0)]
〈P b1〉=−

ifPGSTr

∫
d4p

(2π)4
1

−iγµpµ−(GS〈Sc1〉T c1 +iGPγ5〈P b1〉T b1)

dSGPTr

∫
d4p

(2π)4
γ5

−iγµpµ−(GS〈Sc1〉T c1 +iGPγ5〈P b1〉T b1)

〈P b1〉

= − fPGS

dSGP tanα
〈P b1〉. (23)

From Eq. (23) and Eq. (20), we obtain

MΨ =

√

f 2
PG4

S +d2
SG

4
P tan2 α

2Nd

〈P b1〉
dSGP tanα

. (24)

Substituting Eq. (13) and Eq. (23) into Eq. (22), we can rewrite the self-consistency equation (22) as

(g2f 3
PG2

S +g2dSf
2
PG2

P tan2 α)〈P b1 〉3 =−ifVdSG
3
P tan2 α

√

1

2Nd

〈Ψ̄γ5Ψ〉. (25)

In this self-consistency equation, with an invariant momentum cut-off at p2 = Λ2, in the momentum integral,

〈Ψ̄γ5Ψ〉 will be finite quantities as follows:

〈Ψ̄γ5Ψ〉 = −iTr[γ5SF(0)] = Tr

∫
d4p

(2π)4
−iγ5

−iγµpµ−(GS〈Sc1〉T c1 +iGPγ5〈P b1〉T b1)

= Tr

∫
d4p

(2π)4
−iγ5[iγµpµ−(GS〈Sc1〉T c1 +iGPγ5〈P b1〉T b1)]

p2 +M 2
Ψ

=
i

2π
2
MΨ sinα

[

M 2
Ψ ln

(

Λ2

M 2
Ψ

+1

)

−Λ2

]

. (26)

Substituting (26) into (25), we have

〈P b1〉2 = ζ

[

(f 2
PG4

S +d2
SG

4
P tan2 α)〈P b1 〉2

2Ndd2
SG

2
P tan2 α

ln

(

2Ndd
2
SG

2
PΛ2 tan2 α

(f 2
PG4

S +d2
SG

4
P tan2 α)〈P b1 〉2 +1

)

−Λ2

]

, (27)

in which

ζ =
fVG2

P tanα sinα
√

f 2
PG4

S +d2
SG

4
P tan2 α

4π
2Nd(g2f 3

PG2
S +g2dSf 2

PG2
P tan2 α)

. (28)

From Eq. (27) and Eq. (23), one can finally ob-

tain that the non-vanishing vacuum expectation val-

ues of the scalar field S and the pseudoscalar field

P are completely determined by the self-energy of

the fermions. Note that Eq. (27) and Eq. (23) deter-

mine the magnitude and the direction of the vacuum

state C0 = (〈Sc〉,〈P b〉). Evidently, the gauge bosons

acquired masses, due to the non-vanishing vacuum

expectation values of the scalar field S and the pseu-

doscalar field P which are determined by the self-

energy of the fermions. So the CP and T symmetry is

broken dynamically; but the product CPT symmetry



134 Chinese Physics C (HEP & NP) Vol. 35

remains intact. The amplitude of the CP violation

[27] is

A− =
G2

P sinαcosα

2Nd(k2 +M 2
P)

, (29)

where k denotes the 4-momentum transfer.

In the literature of usual spontaneous CP viola-

tion models there exist some unnatural aspects: the

need of spontaneous symmetry breakdown, and thus

the necessity of an ad-hoc adjunction of a scalar mul-

tiplet of Higgs fields. The dynamical CP violation of

GYMM is an attempt in this area. It is shown, by

using the NJL mechanism, that the gauge symmetry

and the CP symmetry can be broken down dynam-

ically. Through the discussion of the present paper,

it presents a basic mechanism about dynamical CP

violation.
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